skip to main content

Theoretical Study of Methane Dissociation on Pt(111) Surface Using Density Functional Theory (DFT) Calculations

1Department of Chemical Engineering, The University of Technology, Baghdad, 10066, Iraq

2Department of Chemical, Paper, and Biomedical Engineering, Miami University, 64 Engineering Building 650 E. High St, Oxford, OH 45056, United States

Received: 2 Aug 2023; Revised: 29 Sep 2023; Accepted: 30 Sep 2023; Available online: 2 Oct 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this work, methane (CH4) dissociation on Pt(111) surface dissociation was studied based on density functional theory (DFT) calculations to evaluate the nature of adsorption and to calculate the rate constant. The most stable configurations for H and CH3 were tested on the surface of Pt(111), and the results displayed that H tends to be adsorbed at the fcc site while CH3 tends to be adsorbed at the top site. The energy of barrier and rate constant of reaction were calculated and found to be (2.28 eV) and (3.21007E−08 s1) respectively. In addition, the adsorption energy for the reactant and products to investigate the nature of adsorption of the reactant and products on Pt(111) surface either physisorption or chemisorption. The results showed that the kind of adsorption of CH4 adsorbed on the surface of Pt(111) at top site is physisorption, while CH3 and H species adsorption on the Pt(111) surface is chemisorption. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Methane dissociation; Pt(111) Surface; DFT; Density Functional Theory; reforming

Article Metrics:

  1. Hu, D., Ordomsky, V. V, Khodakov, A.Y. (2021). Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions. Applied Catalysis B: Environmental, 286, 119913. DOI: 10.1016/j.apcatb.2021.119913
  2. Xiao, L., Wang, L. (2007). Methane activation on Pt and Pt4: A density functional theory study. The Journal of Physical Chemistry B, 111(7), 1657–1663. DOI: 10.1021/jp065288e
  3. Abbott, H.L., Harrison, I. (2008). Methane dissociative chemisorption on Ru (0001) and comparison to metal nanocatalysts. Journal of Catalysis, 254(1), 27–38. DOI: 10.1016/j.jcat.2007.11.013
  4. Zhang, C.J., Hu, P. (2002). Methane transformation to carbon and hydrogen on Pd (100): Pathways and energetics from density functional theory calculations. The Journal of Chemical Physics, 116(1), 322–327. DOI: 10.1063/1.1423663
  5. Bunnik, B.S., Kramer, G.J. (2006). Energetics of methane dissociative adsorption on Rh {111} from DFT calculations. Journal of Catalysis, 242(2), 309–318. DOI: 10.1016/j.jcat.2006.06.015
  6. Kokalj, A., Bonini, N., Sbraccia, C., de Gironcoli, S., Baroni, S. (2004). Engineering the reactivity of metal catalysts: a model study of methane dehydrogenation on Rh (111). Journal of the American Chemical Society, 126(51), 16732–16733. DOI: 10.1021/ja045169h
  7. Huang, W., Xie, K.C., Wang, J.P., Gao, Z.H., Yin, L.H., Zhu, Q.M. (2001). Possibility of direct conversion of CH4 and CO2 to high-value products. Journal of Catalysis, 201(1), 100–104. DOI: 10.1006/jcat.2001.3223
  8. Ding, Y.H., Huang, W., Wang, Y.G. (2007). Direct synthesis of acetic acid from CH4 and CO2 by a step-wise route over Pd/SiO2 and Rh/SiO2 catalysts. Fuel Processing Technology, 88(4), 319–324. DOI: 10.1016/j.fuproc.2004.09.003
  9. Ukraintsev, V.A., Harrison, I. (1994). A statistical model for activated dissociative adsorption: application to methane dissociation on Pt (111). The Journal of Chemical Physics, 101(2), 1564–1581. DOI: 10.1063/1.468476
  10. Luntz, A.C., Bethune, D.S. (1989). Activation of methane dissociation on a Pt (111) surface. The Journal of Chemical Physics, 90(2), 1274–1280. DOI: 10.1063/1.456132
  11. Gao, D., Feng, Y., Yin, H., Wang, A., Jiang, T. (2013). Coupling reaction between ethanol dehydrogenation and maleic anhydride hydrogenation catalyzed by Cu/Al2O3, Cu/ZrO2, and Cu/ZnO catalysts. Chemical Engineering Journal, 233, 349–359. DOI: 10.1016/j.cej.2013.08.058
  12. Al-Auda, Z., Li, X., Hohn, K.L. (2022). Dehydrogenation of 2, 3-Butanediol to Acetoin Using Copper Catalysts. Industrial & Engineering Chemistry Research, 61(10), 3530–3538. DOI: 10.1021/acs.iecr.1c04181
  13. Saerens, S., Sabbe, M.K., Galvita, V. V, Redekop, E.A., Reyniers, M.-F., Marin, G.B. (2017). The positive role of hydrogen on the dehydrogenation of propane on Pt (111). ACS Catalysis, 7(11), 7495–7508. DOI: 10.1021/acscatal.7b01584
  14. Jiang, R., Guo, W., Li, M., Fu, D., Shan, H. (2009). Density functional investigation of methanol dehydrogenation on Pd (111). The Journal of Physical Chemistry C, 113(10), 4188–4197. DOI: 10.1021/jp810811b
  15. Al-Auda, Z., Al-Atabi, H., Li, X., Thapa, P., Hohn, K. (2019). Conversion of 5-Methyl-3-Heptanone to C8 Alkenes and Alkane over Bifunctional Catalysts. Catalysts, 9(10), 845. DOI: 10.3390/catal9100845
  16. Al-Auda, Z., Al-Atabi, H., Hohn, K. (2018). Metals on ZrO2: Catalysts for the Aldol Condensation of Methyl Ethyl Ketone (MEK) to C8 Ketones. Catalysts, 8(12), 622. DOI: 10.3390/catal8120622
  17. Xu, Z., Yue, Y., Bao, X., Xie, Z., Zhu, H. (2019). Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework. ACS Catalysis, 10(1), 818–828. DOI: 10.1021/acscatal.9b03527
  18. Al-Auda, Z., Al-Atabi, H., Li, X., Zheng, Q., Hohn, K.L. (2019). Conversion of methyl ethyl ketone to butenes over bifunctional catalysts. Applied Catalysis A: General, 570, 173–182. DOI: 10.1016/j.apcata.2018.09.027
  19. Ma, R., Gao, J., Kou, J., Dean, D.P., Breckner, C.J., Liang, K., Zhou, B., Miller, J.T., Zou, G. (2022). Insights into the nature of selective nickel sites on Ni/Al2O3 catalysts for propane dehydrogenation. ACS Catalysis, 12(20), 12607–12616. DOI: 10.1021/acscatal.2c03240
  20. Mi, C., Huang, Y., Chen, F., Wu, K., Wang, W., Yang, Y. (2021). Density functional theory study on dehydrogenation of methylcyclohexane on Ni–Pt (111). International Journal of Hydrogen Energy, 46(1), 875–885. DOI: 10.1016/j.ijhydene.2020.09.207
  21. Akça, A. (2020). CH4 dissociation on the Pd/Cu (111) surface alloy: A DFT study. Open Physics, 18(1), 790–798. DOI: 10.1515/phys-2020-0195
  22. Roy, S., Hariharan, S., Tiwari, A.K. (2018). Pt–Ni subsurface alloy catalysts: an improved performance toward CH4 dissociation. The Journal of Physical Chemistry C, 122(20), 10857–10870. DOI: 10.1021/acs.jpcc.8b01705
  23. Nave, S., Tiwari, A.K., Jackson, B. (2010). Methane dissociation and adsorption on Ni (111), Pt (111), Ni (100), Pt (100), and Pt (110)-(1× 2): energetic study. The Journal of Chemical Physics, 132(5), 54705. DOI: 10.1063/1.3297885
  24. Petersen, M.A., Jenkins, S.J., King, D.A. (2004). Theory of Methane Dehydrogenation on Pt {110}(1× 2). Part I: Chemisorption of CH x (x= 0− 3). The Journal of Physical Chemistry B, 108(19), 5909–5919. DOI: 10.1021/jp037880z
  25. Zhang, R., Song, L., Wang, Y. (2012). Insight into the adsorption and dissociation of CH4 on Pt (h k l) surfaces: A theoretical study. Applied Surface Science, 258(18), 7154–7160. DOI: 10.1016/j.apsusc.2012.04.020
  26. Liu, H., Zhang, R., Yan, R., Wang, B., Xie, K. (2011). CH4 dissociation on NiCo (1 1 1) surface: A first-principles study. Applied Surface Science, 257(21), 8955–8964. DOI: 10.1016/j.apsusc.2011.05.073
  27. Qi, Q., Wang, X., Chen, L., Li, B. (2013). Methane dissociation on Pt (1 1 1), Ir (1 1 1) and PtIr (1 1 1) surface: A density functional theory study. Applied Surface Science, 284, 784–791. DOI: 10.1016/j.apsusc.2013.08.008
  28. Ueta, H., Chen, L., Beck, R.D., Colón-Dìaz, I., Jackson, B. (2013). Quantum state-resolved CH 4 dissociation on Pt (111): coverage dependent barrier heights from experiment and density functional theory. Physical Chemistry Chemical Physics, 15(47), 20526–20535. DOI: 10.1039/C3CP52244J
  29. Kresse, G., Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15–50. DOI: 10.1016/0927-0256(96)00008-0
  30. Kresse, G., Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169. DOI: 10.1103/PhysRevB.54.11169
  31. Dianat, A., Seriani, N., Ciacchi, L.C., Pompe, W., Cuniberti, G., Bobeth, M. (2009). Dissociative Adsorption of Methane on Surface Oxide Structures of Pd− Pt Alloys. The Journal of Physical Chemistry C, 113(50), 21097–21105. DOI: 10.1021/jp905689t

Last update:

No citation recorded.

Last update:

No citation recorded.