skip to main content

Lanthanum-substituted Cobalt Ferrite Established by the Co-precipitation Process: Annealing Temperature Adjustment of Structural, Magnetic, and Dye Removal Characteristics

1Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Jebres, Surakarta 57126, Indonesia

2Physics Education Department, Faculty of Teacher Training and Education, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan Surakarta 57126, Indonesia

Received: 25 Jul 2023; Revised: 17 Oct 2023; Accepted: 18 Oct 2023; Available online: 23 Oct 2023; Published: 11 Dec 2023.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Co-precipitation process was used for the synthesis of lanthanum-substituted cobalt ferrite nanoparticles at several annealing temperatures (Ta), i.e., 200 °C, 300 °C, and 400 °C, for 5 h. XRD spectral depicted that the produced nanoparticles sample indicates a single phase of fcc inverse spinel conforming to ICDD No 22-1086. The crystallite size (D) calculation at the strongest peaks shows the increase in enhancing the Ta i.e., 18.99 nm, 19.90 nm, and 23.21 nm for 200 °C, 300 °C, and 400 °C, respectively. The FTIR results showed absorption band at the tetrahedral site, v1 ~575 cm1 and the octahedral site, v2 ~474 cm1. The absorption bands indicate that the lanthanum ions have successfully replaced the Fe3+ cations in the original cobalt ferrite structure. According to the hysteresis loop, the coercive field's (HC) magnitude falls from 700 Oe down to 550 Oe as Ta increases. This result is consistent with the anisotropy constant which decreased from 0.77×104 erg/cm3 to 0.56×104 erg/cm3. The obtained nanoparticles also showed superior performance (much larger than 95%) for dye removal of Congo red. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Cobalt Ferrite; Co-precipitation; Nanoparticles; Dye Removal
Funding: Universitas Sebelas Maret under contract 228/UN27.22/PT.01.03/2023

Article Metrics:

  1. Pubby, K., Meena, S.S., Yusuf, S.M., Bindra Narang, S. (2018). Cobalt substituted nickel ferrites via Pechini’s sol–gel citrate route: X-band electromagnetic characterization. Journal of Magnetism and Magnetic Materials, 466, 430–445. DOI: 10.1016/j.jmmm.2018.07.038
  2. Ghorbani, H., Eshraghi, M., Sabouri Dodaran, A.A. (2022). Structural and magnetic properties of cobalt ferrite nanoparticles doped with cadmium. Physica B: Condensed Matter, 634, 413816. DOI: 10.1016/j.physb.2022.413816
  3. Zhang, W., Sun, A., Zhao, X., Pan, X., Han, Y., Suo, N., Yu, L., Zuo, Z. (2020). Structural and magnetic properties of Ni–Cu–Co ferrites prepared from sol-gel auto combustion method with different complexing agents. Journal of Alloys and Compounds, 816, 152501. DOI: 10.1016/j.jallcom.2019.152501
  4. Mariosi, F.R., Venturini, J., da Cas Viegas, A., Bergmann, C.P. (2020). Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceramics International, 46(3), 2772–2779. DOI: 10.1016/j.ceramint.2019.09.266
  5. Ai, L., Jiang, J. (2010). Influence of annealing temperature on the formation, microstructure and magnetic properties of spinel nanocrystalline cobalt ferrites. Current Applied Physics, 10(1), 284–288. DOI: 10.1016/j.cap.2009.06.007
  6. Prasetya, N.P., Setiyani, R.I., Utari, Kusumandari, K., Iriani, Y., Safani, J., Taufiq, A., Wibowo, N.A., Suharno, S., Purnama, B. (2023). Cation trivalent tune of crystalline structure and magnetic properties in coprecipitated cobalt ferrite nanoparticles. Materials Research Express, 10(3), 036102. DOI: 10.1088/2053-1591/acc011
  7. Al Maashani, M.S., Khalaf, K.A., Gismelseed, A.M., Al-Omari, I.A. (2020). The structural and magnetic properties of the nano-CoFe2O4 ferrite prepared by sol-gel auto-combustion technique. Journal of Alloys and Compounds, 817, 152786. DOI: 10.1016/j.jallcom.2019.152786
  8. Kotnala, R.K., Shah, J. (2015). Ferrite Materials: Nano to Spintronics Regime. Handbook of Magnetic Materials, 23, 291–379. DOI: 10.1016/B978-0-444-63528-0.00004-8
  9. Zheng, B., Fan, J., Chen, B., Qin, X., Wang, J., Wang, F., Deng, R., Liu, X. (2022). Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews, 122(6), 5519–5603. DOI: 10.1021/acs.chemrev.1c00644
  10. Jing, X., Guo, M., Li, Z., Qin, C., Chen, Z., Li, Z., Gong, H. (2023). Study on structure and magnetic properties of rare earth doped cobalt ferrite: The influence mechanism of different substitution positions. Ceramics International, 49(9), 14046–14056. DOI: 10.1016/j.ceramint.2022.12.286
  11. López-Ortega, A., Lottini, E., de Julián Fernández, C., Sangregorio, C. (2015). Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet. Chemistry of Materials, 27(11), 4048–4056. DOI: 10.1021/acs.chemmater.5b01034
  12. Caltun, O.F., Rao, G.S.N., Rao, K.H., Rao, B.P., Kim, C., Kim, C.-O., Dumitru, I., Lupu, N., Chiriac, H. (2007). High Magnetostrictive Cobalt Ferrite for Sensor Applications. Sensor Letters, 5(1), 45–47. DOI: 10.1166/sl.2007.027
  13. Swathi, S., Yuvakkumar, R., Kumar, P.S., Ravi, G., Velauthapillai, D. (2021). Annealing temperature effect on cobalt ferrite nanoparticles for photocatalytic degradation. Chemosphere, 281, 130903. DOI: 10.1016/j.chemosphere.2021.130903
  14. Sanpo, N., Berndt, C.C., Wen, C., Wang, J. (2013). Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomaterialia, 9(3), 5830–5837. DOI: 10.1016/j.actbio.2012.10.037
  15. Dey, C., Baishya, K., Ghosh, A., Goswami, M.M., Ghosh, A., Mandal, K. (2017). Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 427, 168–174. DOI: 10.1016/j.jmmm.2016.11.024
  16. Arshad, J.M., Raza, W., Amin, N., Nadeem, K., Imran Arshad, M., Azhar Khan, M. (2021). Synthesis and characterization of cobalt ferrites as MRI contrast agent. Materials Today: Proceedings, 47, S50–S54. DOI: 10.1016/j.matpr.2020.04.746
  17. Hazarika, S., Borah, G. (2022). Silica supported spinel structured cobalt ferrite multifunctional nanocatalyst for hydration of nitriles and oxidative decarboxylation of phenylacetic acids. Applied Organometallic Chemistry, 36(11), e6864. DOI: 10.1002/aoc.6864
  18. Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A. (2007). Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. Journal of Magnetism and Magnetic Materials, 308(2), 289–295. DOI: 10.1016/j.jmmm.2006.06.003
  19. Purnama, B., Rahmawati, R., Wijayanta, A.T., Suharyana (2015). Dependence of structural and magnetic properties on annealing times in co-precipitated cobalt ferrite nanoparticles. Journal of Magnetics, 20(3), 207–210. DOI: 10.4283/jmag.2015.20.3.207
  20. Sajjia, M., Oubaha, M., Prescott, T., Olabi, A.G. (2010). Development of cobalt ferrite powder preparation employing the sol-gel technique and its structural characterization. Journal of Alloys and Compounds, 506(1), 400–406. DOI: 10.1016/j.jallcom.2010.07.015
  21. Hashemi, S.M., Ataollahi, Z., Hasani, S., Seifoddini, A. (2023). Synthesis of the cobalt ferrite magnetic nanoparticles by sol–gel auto-combustion method in the presence of egg white (albumin). Journal of Sol-Gel Science and Technology, 106, 23–36. DOI: 10.1007/s10971-023-06073-2
  22. Rahardjo, D.T., Budiawanti, S., Suharno, Iriani, Y., Supriyanto, A., Purnama, B. (2021). Temperature sintering dependence of crystalline structure in cobalt ferrite prepared by the sol-gel auto-combustion procedure. Journal of Physics: Conference Series, 1951(1), 012026. DOI: 10.1088/1742-6596/1951/1/012026
  23. Priyadharsini, R., Dhamodharan, P., Venkateshwarlu, M., Manoharan, C. (2023). Influence of cobalt on magnetic, dielectric and electrochemical properties of copper ferrite nanoparticles via hydrothermal method. Solid State Sciences, 137, 107123. DOI: 10.1016/j.solidstatesciences.2023.107123
  24. Moosavi, S., Zakaria, S., Chia, C.H., Gan, S., Azahari, N.A., Kaco, H. (2017). Hydrothermal synthesis, magnetic properties and characterization of CoFe2O4 nanocrystals. Ceramics International, 43(10), 7889–7894. DOI: 10.1016/j.ceramint.2017.03.110
  25. Das, S., Manoharan, C., Venkateshwarlu, M., Dhamodharan, P. (2019). Structural, optical, morphological and magnetic properties of nickel doped cobalt ferrite nanoparticles synthesized by hydrothermal method. Journal of Materials Science: Materials in Electronics, 30(22), 19880–19893. DOI: 10.1007/s10854-019-02355-0
  26. Jain, R., Kumar, S., Meena, S.K. (2022). Precipitating agent (NaOH and NH4OH) dependent magnetic properties of cobalt ferrite nanoparticles. AIP Advances, 12(9), 095109. DOI: 10.1063/5.0098157
  27. Zhang, Y., Yang, Z., Yin, D., Liu, Y., Fei, C., Xiong, R., Shi, J., Yan, G. (2010). Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. Journal of Magnetism and Magnetic Materials, 322(21), 3470–3475. DOI: 10.1016/j.jmmm.2010.06.047
  28. Kamran, M., Anis-ur-Rehman, M. (2020). Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications. Journal of Alloys and Compounds, 822, 153583. DOI: 10.1016/j.jallcom.2019.153583
  29. Kole, A.K., Kumbhakar, P. (2012). Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals. Results in Physics, 2, 150–155. DOI: 10.1016/j.rinp.2012.09.010
  30. Riyatun, R., Kusumaningsih, T., Supriyanto, A., Akmal, H.B., Zulhaina, F.M., Prasetya, N.P., Purnama, B. (2023). Nanoparticle−preparation−procedure tune of physical, antibacterial, and photocatalyst properties on silver substituted cobalt ferrite. Results in Engineering, 18, 101085. DOI: 10.1016/j.rineng.2023.101085
  31. Amiri, S., Shokrollahi, H. (2013). Magnetic and structural properties of RE doped Co-ferrite (RE=Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. Journal of Magnetism and Magnetic Materials, 345, 18–23. DOI: 10.1016/j.jmmm.2013.05.030
  32. Pavan Kumar Chintala, J.N., Bharadwaj, S., Chaitanya Varma, M., Choudary, G.S.V.R.K. (2022). Impact of cobalt substitution on cation distribution and elastic properties of Ni–Zn ferrite investigated by X-ray diffraction, infrared spectroscopy, and Mössbauer spectral analysis. Journal of Physics and Chemistry of Solids, 160, 110298. DOI: 10.1016/j.jpcs.2021.110298
  33. Purnama, B., Arilasita, R., Rikamukti, N., Utari, U., Budiawanti, S., Suharno, S., Wijayanta, A.T., Suharyana, Djuhana, D., Suharyadi, E., Tanaka, T., Matsuyama, K. (2022). Annealing temperature dependence of crystalline structure and magnetic properties in nano-powder strontium-substituted cobalt ferrite. Nano-Structures & Nano-Objects, 30, 100862. DOI: 10.1016/j.nanoso.2022.100862
  34. B.D. Cullity, Graham, C.D. (2009). Introduction to Magnetic Magnetic Materials, Second Edition. IEEE Pres&Wiley, New Jersey, USA
  35. Abraime, B., El Maalam, K., Fkhar, L., Mahmoud, A., Boschini, F., Ait Tamerd, M., Benyoussef, A., Hamedoun, M., Hlil, E.K., Ait Ali, M., El Kenz, A., Mounkachi, O. (2020). Influence of synthesis methods with low annealing temperature on the structural and magnetic properties of CoFe2O4 nanopowders for permanent magnet application. Journal of Magnetism and Magnetic Materials, 500, 166416. DOI: 10.1016/j.jmmm.2020.166416
  36. Nitika, N., Rana, A., Kumar, V., Awasthi, A.M. (2021). Effect of dopant concentration and annealing temperature on electric and magnetic properties of lanthanum substituted CoFe2O4 nanoparticles for potential use in 5G wireless communication systems. Ceramics International, 47(14), 20669–20677. DOI: 10.1016/j.ceramint.2021.04.077
  37. El-Shobaky, G.A., Turky, A.M., Mostafa, N.Y., Mohamed, S.K. (2010). Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation. Journal of Alloys and Compounds, 493(1–2), 415–422. DOI: 10.1016/j.jallcom.2009.12.115
  38. Ashour, A.H., El-Batal, A.I., Maksoud, M.I.A.A., El-Sayyad, G.S., Labib, S., Abdeltwab, E., El-Okr, M.M. (2018). Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology, 40, 141–151. DOI: 10.1016/J.PARTIC.2017.12.001
  39. Kabilan, R., Ashokkumar, M. (2022). Annealing temperature enhanced visible absorption and magnetic properties of (Cu, Cr) co-doped ZnO diluted magnetic semiconductors. Journal of Molecular Structure, 1249, 131536. DOI: 10.1016/j.molstruc.2021.131536
  40. Kumar, L., Kumar, P., Narayan, A., Kar, M. (2013). Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. International Nano Letters, 3(1), 1–12. DOI: 10.1186/2228-5326-3-8
  41. Muthee, D.K., Dejene, B.F. (2021). Effect of annealing temperature on structural, optical, and photocatalytic properties of titanium dioxide nanoparticles. Heliyon, 7(6), e07269. DOI: 10.1016/j.heliyon.2021.e07269
  42. Khalid Hossain, M., Pervez, M.F., Mia, M.N.H., Tayyaba, S., Jalal Uddin, M., Ahamed, R., Khan, R.A., Hoq, M., Khan, M.A., Ahmed, F. (2017). Annealing temperature effect on structural, morphological and optical parameters of mesoporous TiO2 film photoanode for dye-sensitized solar cell application. Materials Science- Poland, 35(4), 868–877. DOI: 10.1515/msp-2017-0082
  43. Aslam, A., Razzaq, A., Naz, S., Amin, N., Arshad, M.I., Nabi, M.A.U., Nawaz, A., Mahmood, K., Bibi, A., Iqbal, F., Shakil, M., Farooq, Z., Iqbal, M.Z., Haider, S.S., Rehman, A. ur (2021). Impact of Lanthanum-Doping on the Physical and Electrical Properties of Cobalt Ferrites. Journal of Superconductivity and Novel Magnetism, 34(7), 1855–1864. DOI: 10.1007/s10948-021-05802-4
  44. El-Ghazzawy, E.H. (2020). Effect of heat treatment on structural, magnetic, elastic and optical properties of the co-precipitated Co0.4Sr0.6Fe2O4. Journal of Magnetism and Magnetic Materials, 497, 166017. DOI: 10.1016/j.jmmm.2019.166017
  45. Chandra Sekhar, D., Subba Rao, T., Chandra Babu Naidu, K. (2020). Iron deficient BaNixMnxFe12−2xO19 (x = 0.0–0.5) hexagonal plates: single-domain magnetic structure and dielectric properties. Applied Physics A: Materials Science and Processing, 126(7), 1–8. DOI: 10.1007/s00339-020-03681-5
  46. Ibrahim, S.M., Badawy, A.A., Essawy, H.A. (2019). Improvement of dyes removal from aqueous solution by Nanosized cobalt ferrite treated with humic acid during coprecipitation. Journal of Nanostructure in Chemistry, 9(4), 281–298. DOI: 10.1007/s40097-019-00318-9
  47. Bao, Y., Song, S., Yao, G., Jiang, S. (2021). S-Scheme Photocatalytic Systems. Solar RRL, 5(7), 1–13. DOI: 10.1002/solr.202100118
  48. Dong, S., Feng, J., Fan, M., Pi, Y., Hu, L., Han, X., Liu, M., Sun, J., Sun, J. (2015). Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review. RSC Advances, 5(19), 14610–14630. DOI: 10.1039/c4ra13734e

Last update:

No citation recorded.

Last update:

No citation recorded.