skip to main content

One Pot Synthesis of Calcium Sulfate Hemihydrate from Fishbone-derived Carbon

1Chemistry Department, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

2Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

3Chemistry Department, Brawijaya University, Malang, 65145, East Java, Indonesia

4 School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia

5 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

6 Department of Chemistry, Universitas Negeri Malang, Malang 65145, Indonesia

7 Center of Advanced Materials for Renewable Energy (CAMRY), Universitas Negeri Malang, Jl. Semarang, No. 5, Malang 65145, Indonesia

View all affiliations
Received: 19 Jul 2023; Revised: 3 Sep 2023; Accepted: 4 Sep 2023; Available online: 7 Sep 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Calcium Sulfate Hemihydrate (CSH) with uniform morphology and high crystallinity were successfully prepared by a precipitation-hydrolysis method in a concentrated sulfuric acid solution containing fishbone-derived carbon. The CSH was produced by carbonization of fishbone powder at 500 °C for 2 h, followed by sulfonation with concentrated sulfuric acid for 3 h. The solid mixture was washed until the pH of 2, then left at room temperature for 3 days. Physical properties of synthesized CSH were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), wavelength dispersive X-ray fluorescence (WDXRF), Scanning Electron Microscope (SEM), nitrogen adsorption-desorption isotherm, and melting point test. It is concluded that the CSH were formed due to hydrolysis of fishbone-derived carbon in a moderately concentrated sulfuric acid solution of carbon-derived fishbone and crystallization into a fibrous octa calcium phosphate (OCP) form. In this research, effect of crystal growth time, effect of pH during the crystal growth, and effect of volume of the solution were also investigated. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Calcium sulfate hemihydrate; carbon; fishbone; carbonization; sulfonation
Funding: Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi, Republik Indonesia under contract contract number: 502/UN17.L1/HK/2023

Article Metrics:

  1. Singh, N.B., Middendorf, B. (2007). Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials, 53, 57-77. DOI: 10.1016/j.pcrysgrow.2007.01.002
  2. Xin, Y., Hou, S.C., Xiang, L., Yu, Y.-X. (2015). Adsorption and substitution effects of Mg on the growth of calcium sulfate hemihydrate: An ab initio DFT study. Applied Surface Science, 357, 1551-1557. DOI: 10.1016/j.apsusc.2015.09.223
  3. Hou, S.C., Xiang, L. (2013). Influence of activity of CaSO4·2H2O on hydrothermal formation of CaSO4·0.5H2O whiskers. Journal of Nanomaterials, 2013, 2-7. DOI: 10.1155/2013/237828
  4. Zhao, W., Wu, Y., Xu, J., Gao, C. (2015). Effect of ethylene glycol on hydrothermal formation of calcium sulfate hemihydrate whiskers with high aspect ratios. RSC Advances, 5(62), 50544–50548. DOI: 10.1039/c5ra07712e
  5. Chen, S., Wang, Q., Wang, T. (2011). Mechanical, damping, and thermal properties of calcium sulfate whisker-filled castor oil-based polyurethane/epoxy ipn composites. Journal of Reinforced Plastics and Composites, 30(6), 509-515. DOI: 10.1177/0731684411398539
  6. Wang, J., Yang, K., Lu, S. (2015). Preparation and characteristic of novel silicone rubber composites based on organophilic calcium sulfate whisker. High Performance Polymers, 23(2), 141-150. DOI: 10.1177/0954008310395415
  7. Yuan, W., Cui, J., Cai, Y., Xu, S. (2015). A novel surface modification for calcium sulfate whisker used for reinforcement of poly(vinyl chloride), Journal of Polymer Research, 22(173), 1-9. DOI 10.1007/s10965-015-0813-4
  8. Han, Q., Luo, K., Li, H., Xiang, L. (2014). Influence of disodium hydrogen phosphate dodecahydrate on hydrothermal formation of hemihydrate calcium sulfate whiskers. Particuology, 17, 131-135. DOI: 10.1016/j.partic.2013.10.002
  9. Xu, A.-Y., Li, H.-P., Luo, K.-B., Xiang, L. (2011). Formation of calcium sulfate whiskers from CaCO3-bearing desulfurization gypsum. Research on Chemical Intermediates, 37, 449-455. DOI: 10.1007/s11164-011-0283-1
  10. Wang, P., Lee, E.-J., Park, C.-S., Yoon, B.-H., Shin, D.-S., Kim, H.-E. (2008). Calcium Sulfate Hemihydrate Powders with a Controlled Morphology for Use as Bone Cement. Journal of the American Ceramic Society, 91(6), 2039-2042. DOI: 10.1111/j.1551-2916.2008.02358.x
  11. Fukugaichi, S., Matsue, N. (2018). One-Step Synthesis of Calcium Sulfate Hemihydrate Nanofibers from Calcite at Room Temperature. ACS Omega, 3(3), 2820-2824. DOI: 10.1021/acsomega.7b01994
  12. Fu, L., Xia, W., Mellgren, T., Moge, M., Engqvist, H. (2017). Preparation of High Percentage α-Calcium Sulfate Hemihydrate via a Hydrothermal Method, Journal of Biomaterials and Nanobiotechnology, 8, 36-49. DOI: 10.4236/jbnb.2017.81003
  13. Xu, A.-Y., Li, H.-P., Luo, K.-B., Xiang, L. (2011). Formation of calcium sulfate whiskers from CaCO3-bearing desulfurization gypsum, Research on Chemical Intermediates, 37(2), 449-455. DOI: 10.1007/s11164-011-0283-1
  14. Wang, X., Yang, L., Zhu, X., Yang, J. (2014). Preparation of calcium sulfate whiskers from FGD gypsum via hydrothermal crystallization in the H2SO4–NaCl–H2O system. Particuology, 12, 42-48. DOI: 10.1016/j.partic.2013.12.001
  15. Liu, C., Zhao, Q., Wang, Y., Shi, P., Jiang, M. (2016). Hydrothermal synthesis of calcium sulfate whisker from flue gas desulfurization gypsum. Chinese Journal of Chemical Engineering, 24(11), 1552-1560. DOI: 10.1016/j.cjche.2016.04.024
  16. Jiang, N., Zhang, C., Xue, C., Dang, L., Xu, S. (2018). In situ synthesis of hydrophobic calcium sulfate hemihydrate whiskers. Materials Research Express, 5, 1-7. DOI: 10.1088/2053-1591/aace63
  17. Lestari, S., Nurhadi, M., Kusumawardani, R., Saputro, E., Pujisupiati, R., Muskita, N.S., Fortun, N., Purwandari, A.S.,Aryani, F., Lai, S.Y., Nur, H. (2022). Comparative Adsorption Performance of Carbon-containing Hydroxyapatite Derived Tenggiri (Scomberomorini) and Belida (Chitala) Fish Bone for Methylene Blue. Bulletin of Chemical Reaction Engineering & Catalysis, 17(3), 565-576. DOI: 10.9767/bcrec.17.3.15303.565-576
  18. Raynaud, S., Champion, E., Bernache-Assollant, D., Laval, J.-P. (2001). Determination of Calcium/Phosphorus Atomic Ratio of Calcium Phosphate Apatites Using X-Ray Diffractometry. Journal of the American Ceramic Society, 84(2), 59-66. DOI: 10.1111/j.1151-2916.2001.tb00663.x
  19. Babos, D.V., Costa, V.C., Sperança, M.A., Pereira-Filho, E.R. (2018). Direct determination of calcium and phosphorus in mineral supplements for cattle by wavelength dispersive X-ray fluorescence (WD-XRF). Microchemical Journal, 137, 272-276. DOI: 10.1016/j.microc.2017.11.002
  20. Costa, V.C., Amorim, F.A.C., Babos, D.V.d., Pereira-Filho, E.R. (2019). Direct determination of Ca, K, Mg, Na, P, S, Fe and Zn in bivalve mollusks by wavelength dispersive X-ray fluorescence (WDXRF) and laser-induced breakdown spectroscopy (LIBS). Food Chemistry, 273, 91-98. DOI: 10.1016/j.foodchem.2018.02.016
  21. Lu, B.-Q., Willhammar, T., Sun, B.-B., Hedin, N., Gale, J.D., Gebauer, D. (2020). Introducing the crystalline phase of dicalcium phosphate monohydrate. Nature Communications, 11, 1-8. DOI: 10.1038/s41467-020-15333-6
  22. Hoeher, A.J., Mergelsberg, S.T., Borkiewicz, O.J., Michel, F.M. (2021). Impacts of Initial Ca/P on Amorphous Calcium Phosphate. Crystal Growth & Design, 21(7), 3736-3745. DOI: 10.1021/acs.cgd.1c00058
  23. Chakraborty, R., RoyChowdhury, D. (2013). Fish bone derived natural hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch oleic acid esterification. Chemical Engineering Journal, 215–216, 491–499. DOI: 10.1016/j.cej.2012.11.064
  24. Patel, S., Han, J., Qiu, W., Gao, W. (2015). Synthesis and characterisation of mesoporous bone char obtained by pyrolysis of animal bones, for environmental application. Journal of Environmental Chemical Engineering, 3, 2368-2377. DOI: 10.1016/j.jece.2015.07.031
  25. Yin, T., Park, J. W., Xiong, S. (2015). Physicochemical properties of nano fish bone prepared by wet media milling. LWT - Food Science and Technology, 64(1), 367-373. DOI: 10.1016/j.lwt.2015.06.007
  26. Zayed, E.M., Sokker, H.H., Albishri, H.M., Farag, A.M. (2013). Potential use of novel modified fishbone for anchoring hazardous metal ions from their solutions. Ecological Engineering, 61, 390–393. DOI: 10.1016/j.ecoleng.2013.09.010
  27. Szpak, P. (2011). Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. Journal of Archaeological Science, 38(12), 3358-3372. DOI: 10.1016/j.jas.2011.07.022
  28. Boutinguiza, M., Poua, J., Comesaña, R., Lusquiños, F., Carlos, A.d., Leóna, B. (2012). Biological hydroxyapatite obtained from fish bones. Materials Science and Engineering: C, 32(3), 478-486. DOI: 10.1016/j.msec.2011.11.021
  29. Jaber, H.L., Hammood, A.S., Parvin, N. (2017). Synthesis and characterization of hydroxyapatite powder from natural Camelus bone, Journal of the Australian Ceramic Society, 54(1), 1-10. DOI: 10.1007/s41779-017-0120-0
  30. Liu, C., Zhao, Q., Wang, Y., Shi, P., Jiang, M. (2016). Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum. Applied Surface Science., 360, 263-269. DOI: 10.1016/j.apsusc.2015.11.032
  31. Feng, X., Zhang, Y., Wang, G., Miao, M., Shi, L. (2015). Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking. Powder Technology, 271, 1-6. DOI: 10.1016/j.powtec.2014.11.015
  32. Dang, L., Nai, X., Zhu, D., Jing, Y., Liu, X., Dong, Y., Li, W. (2014). Study on the mechanism of surface modification of magnesium oxysulfate whisker. Applied Surface Science, 317, 325-331. DOI: 10.1016/j.apsusc.2014.07.205
  33. Jiang, N., Zhang, C., Xue, C., Dang, L., Xu, S. (2018). In situ synthesis of hydrophobic calcium sulfate hemihydrate whiskers. Materials Research Express, 5, 1-7. DOI: 10.1088/2053-1591/aace63
  34. Qi, Y., Zeng, C., Wang, C., Ke, X., Zhang, L. (2017). Continuous fabrication of calcium sulfate whiskers with adjustable aspect ratio in microdroplets. Materials Letters, 194, 231-233. DOI: 10.1016/j.matlet.2017.02.066
  35. Mao, X., Song, X., Lu, G., Sun, Y., Xu, Y., Yu, J. (2014). Effects of Metal Ions on Crystal Morphology and Size of Calcium Sulfate Whiskers in Aqueous HCl Solutions. Industrial & Engineering Chemistry Research, 53(45), 17625–17635. DOI: 10.1021/ie5030134
  36. Kusumawardani, R., Nurhadi, M., Wirhanuddin, W., Gunawan, R., Nur, H. (2019). Carbon-containing Hydroxyapatite Obtained from Fish Bone as Low-cost Mesoporous Material for Methylene Blue Adsorption. Bulletin of Chemical Reaction Engineering & Catalysis, 14(3), 660-671. DOI: 10.9767/bcrec.14.3.5365.660-671
  37. Abdullah, N.H., Noor, A.M., Mat Rasat, M.S., Mamat, S., Mohamed, M., Mohd Shohaimi, N.A., Mohd Amin, M.F. (2020). Preparation and Characterization of Calcium Hydroxyphosphate (Hydroxyapatite) from Tilapia Fish Bones and Scales via Calcination Method. Materials Science Forum, 1010, 596-601. DOI: 10.4028/www.scientific.net/MSF.1010.596
  38. Wang, P., Lee, E.-J., Park, C.-S., Yoon, B.-H., Shin, D.-S., Kim, H.-E. (2008). Calcium Sulfate Hemihydrate Powders with a Controlled Morphology for Use as Bone Cement. Journal of the American Ceramic Society, 91(6), 2039-2042. DOI: 10.1111/j.1551-2916.2008.02358.x
  39. Liu, C., Zhao, Q., Wang, Y., Shi, P., Jiang, M. (2016). Hydrothermal synthesis of calcium sulfate whisker from flue gas desulfurization gypsum. Chinese Journal of Chemical Engineering, 24(11), 1552-1560. DOI: 10.1016/j.cjche.2016.04.024

Last update:

No citation recorded.

Last update:

No citation recorded.