skip to main content

Core-shell Fe3O4/SiO2/TiO2 Magnetic Modified Ag for the Photocatalytic Degradation of Congo Red Dye and Antibacterial Activity

1Research Group on Magnetic Materials, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, Indonesia

2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, Indonesia

Received: 8 Jul 2023; Revised: 25 Jul 2023; Accepted: 26 Jul 2023; Available online: 28 Jul 2023; Published: 20 Aug 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Disposal of dye wastewater can induce detrimental consequences for human health and the environment. The study aims to synthesize composites consisting of core-shell Fe3O4/SiO2/TiO2 modified with Ag. The composites comprise a Fe3O4 core, a SiO2 interlayer, and a TiO2 shell, with Ag being mobilized on the surface of the core and shell structures. Fe3O4/SiO2/TiO2@Ag composite was employed in the photocatalytic degradation of Congo red dye and antibacterial activity test. The degradation was facilitated by visible light irradiation while considering different factors such as pH solution, the photocatalyst dosage, and the dye's initial concentration. The composite was characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy-Electron Dispersive X-ray Spectroscopy (SEM-EDS), Vibrating Sample Magnetometer (VSM), and UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS). The findings indicated that the composite exhibited strong magnetic, measuring 49.4 emu/g, with a band gap of 2.92 eV. The composite showed commendable catalytic properties, with degradation efficiency of 96.52% for Congo red dye under conditions: a pH solution of 4, a dosage of 0.5 g/L, and a dye concentration of 10 mg/L at 100 min of irradiation. The photocatalytic degradation kinetic is align with pseudo-first-order reactions. The composite also exhibits remarkable stability and efficiency with 4.83% decline in degradation efficiency after five cycles. Fe3O4/SiO2/TiO2@Ag composite exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus with a Minimum Inhibitory Concentration (MIC) value of 250 mg/L. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Core-shell; Fe3O4/SiO2/TiO2@Ag; photocatalytic degradation; Congo red dye; antibacterial
Funding: Ministry of Education, Culture, Research, and Technology, Indonesia

Article Metrics:

  1. Yan, Y., Yang, H., Yi, Z., Xian, T. (2019). NaBH4-reduction induced evolution of Bi nanoparticles from BiOCl nanoplates and construction of promising Bi@BiOCl hybrid photocatalysts. Catalysts, 9(10), 1-20. DOI: 10.3390/catal9100795
  2. Asghar, A., Raman, A.A.A., Daud, W.M.A.W. (2015). Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of Cleaner Production, 87, 826-838. DOI: 10.1016/j.jclepro.2014.09.010
  3. Pérez-Calderón, J., Santos, M.V., Zaritzky, N. (2020). Synthesis, characterization and application of cross-linked chitosan/oxalic acid hydrogels to improve azo dye (Reactive red 195) adsorption. Reactive and Functional Polymers, 155, 1-4. DOI: 10.1016/j.reactfunctpolym.2020.104699
  4. Gómez, V., Larrechi, M.S., Callao, M.P. (2007). Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere, 69(7), 1152-1158. DOI: 10.1016/j.chemosphere.2007.03.076
  5. Malik, A.Q., Mir, T.U.G., Amin, Q., Sathish, M., Kumar, D. (2022). Synthesis, characterization, photocatalytic effect of CuS-ZnO nanocomposite on photodegradation of Congo red and phenol pollutant. Inorganic Chemistry Communications, 43, 1-10. DOI: 10.1016/j.inoche.2022.109797
  6. Ahmad, M.A., Rahman, N.K. (2011). Equilibrium, kinetics and thermodynamic of Remazol brilliant orange 3R dye adsorption on coffee husk-based activated carbon. Chemical Engineering Journal, 170(1), 154-161. DOI: 10.1016/j.cej.2011.03.045
  7. Lops, C., Ancona, A., Cesare, K.D., Dumontel, B., Garino, N., Canavese, G., Hernandez, S., Cauda, V. (2019). Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro and nanoparticles of ZnO. Applied Catalysis B: Environmental, 243, 629-640. DOI: 10.1016/j.apcatb.2018.10.078
  8. Modirshahla, N., Behnajady, M.A., Rahbarfam, R., Hassani, A. (2012). Effects of operational parameters on decolorization of C. I. Acid red 88 by UV/H2O2 process: evaluation of electrical energy consumption. Clean - Soil, Air, Water, 40(3), 298-302. DOI: 10.1002/clen.201000574
  9. de Almeida, E.J.R., Mazzeo, D.E.C., Sommaggio, L.R.D., Marin-Morales, M.A., de Andrade, A.R., Corso, C.R. (2019). Azo dyes degradation and mutagenicity evaluation with a combination of microbiological and oxidative discoloration treatments. Ecotoxicology and Environmental Safety, 183, 1-10. DOI: 10.1016/j.ecoenv.2019.109484
  10. Huo, J., Yu, D., Li, H., Luo, B., Arulsamy, N. (2019). Mechanistic investigation of photocatalytic degradation of organic dyes by a novel zinc coordination polymer. RSC Advances, 9, 39323-39331. DOI: 10.1039/C9RA07821E
  11. Chakraborty, S., Basak, B., Dutta, S., Bhunia, B., Dey, A. (2013). Decolorization and biodegradation of Congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresource Technology, 147, 662-666. DOI: 10.1016/j.biortech.2013.08.117
  12. Harja, M., Buema, G., Bucur, D. (2022). Recent advances in removal of Congo red dye by adsorption using an industrial waste. Scientific Reports, 12, 1-18. DOI: 10.1038/s41598-022-10093-3
  13. Hokonya, N., Mahamadi, C., Mukaratirwa-Muchanyereyi, N., Gutu, T., Zvinowanda, C. (2022). Green synthesis of 𝑃 − 𝑍𝑟𝑂2 𝐶𝑒𝑂2 𝑍𝑛𝑂 nanoparticles using leaf extracts of Flacourtia indica and their application for the photocatalytic degradation of a model toxic dye, Congo red. Heliyon, 8, 1-18. DOI: 10.1016/j.heliyon.2022.e10277
  14. Kalet, S.Z., Ismail, S.A., Ang, W.L., Symes, M.D. (2023). Influence of ultrasound modes on sonoelectrochemical degradation of Congo red and palm oil mill effluent. Result In Chemistry, 5, 1-9. DOI: 10.1016/j.rechem.2023.100880
  15. Sathiskumar, K., Alsahi, M.S., Sanganyando, E., Devanesan, S., Arulprakash, A., Rajasekar, A. (2019). Sequential electrochemical oxidation and bio-treatment of the azo dye Congo red and textile effluent. Journal of Photochemistry and Photobiology B: Biology, 200, 1-7. DOI: 10.1016/j.jphotobiol.2019.111655
  16. Akhtar, A., Aslam, Z., Asghar, A., Bello, M.M., Raman, A.A.A. (2020). Electrocoagulation of Congo red dye-containing wastewater: Optimization of operational parameters and process mechanism. Journal of Environmental Chemical Engineering, 8(5), 1-10. DOI: 10.1016/j.jece.2020.104055
  17. Karim, A.V., Hassani, A., Eghbali, P., Nidheesh, P.V. (2021). Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes. Current Opinion in Solid State and Materials Science, 26(1), 1-26. DOI: 10.1016/j.cossms.2021.100965
  18. Ge. J., Zhang, Y., Heo, Y.J, Park, S.J. (2019). Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: a review. Catalysts, 9(2), 1-32. DOI: 10.3390/catal9020122
  19. Takdastan, A., Kakavandi, B., Azizi, M., Golshan, M. (2018). Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: A new approach into catalytic degradation of bisphenol A. Chemical Engineering Journal, 331, 729-743. DOI: 10.1016/j.cej.2017.09.021
  20. Oturan, M.A., Aaron, J.J. (2014). Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44 (23), 2577-2641. DOI: 10.1080/10643389.2013.829765
  21. Jo, W., Kumar, S., Isaacs, M.A., Lee, A.F., Karthikeyan, S. (2017). Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo red. Applied Catalysis B: Environmental, 21, 159-168. DOI: 10.1016/j.apcatb.2016.08.022
  22. Lin, Z., Dong, C., Mu, W., Han, X. (2023). Degradation of Rhodamine B in the photocatalytic reactor containing TiO2 nanotube arrays coupled with nanobubbles. Advanced Sensor and Energy Materials, 2(2), 1-7. DOI: 10.1016/j.asems.2023.100054
  23. Sepahvand, S., Bahrami, M., Fallah, N. (2022). Photocatalytic degradation of 2,4-DNT in simulated wastewater by magnetic CoFe2O4/SiO2/TiO2 nanoparticles. Environmental Science and Pollution Research, 29, 6479-6490. DOI: 10.1007/s11356-021-13690-3
  24. Shaikh, T., Rathore, A., Kaur, H. (2017). Poly (Lactic Acid) grafting of TiO2 nanoparticles: A shift in dye degradation performance of TiO2 from UV to Solar Light. Chemistry Select, 2(23), 6901-6908. DOI: 10.1002/slct.201701560
  25. Yang, C., Dong, W., Cui, G., Zhao, Y., Shi, X., Xia, X., Tang, B., Wang, W. (2017). Enhanced photocatalytic activity of PANI/TiO2 due to their photosensitization-synergetic effect. Electrochimica Acta, 247, 486-495. DOI: 10.1016/j.electacta.2017.07.037
  26. Fu, C., Liu, X., Wang, Y., Li, L., Zhang, Z. (2109). Preparation and characterization of Fe3O4@SiO2@TiO2–Co/rGO magnetic visible light photocatalyst for water treatment. RSC Advances, 9, 20256-20265. DOI: 10.1039/c9ra04002a
  27. Zielinska-Jurek, A., Bielan, Z., Dudziak, S., Wolak, I., Sobczak, Z., Klimczuk, T., Nowaczyk, G., Hupka, J. (2017). Design and application of magnetic photocatalysts for water treatment. The effect of particle charge on surface functionality. Catalysts, 7(12), 360-368. DOI: 10.3390/catal7120360
  28. Liu, X., Ma, Y., Zhang, Q., Zheng, Z., Wang, L., Peng, L. (2018). Facile synthesis of Fe3O4/C composites for broadband microwave absorption properties. Applied Surface Science, 445, 82-88. DOI: 10.1016/j.apsusc.2018.03.127
  29. Liu, C., Li, Y., Duan, Q. (2020). Preparation of magnetic and thermal dual-responsive zinc-tetracarboxyl phthalocyanine-g-Fe3O4@SiO2@TiO2-g-poly (N-isopropyl acrylamide) core shell green photocatalyst. Applied Surface Science, 503, 1-12. DOI: 10.1016/j.apsusc.2019.144111
  30. Gebrezgiabher, M., Gebreslassie, G., Gebretsadik, T., Yeabyo, G., Elemo, F., Bayeh, Y., Thomas, M., Linert, W. (2019). A C-doped TiO2/Fe3O4 nanocomposite for photocatalytic dye degradation under natural sunlight irradiation. Journal of Composite Science, 3(3), 1-11. DOI: 10.3390/jcs3030075
  31. Fan, Y., Ma, C., Li, W., Yin, Y. (2012). Synthesis and properties of Fe3O4/SiO2/TiO2 nanocomposites by hydrothermal synthetic method. Materials Science in Semiconductor Processing, 15(5), 582-585. DOI: 10.1016/j.mssp.2012.04.013
  32. Su, J., Zhang, Y., Xu, S., Ding, H., Pan, S., Wang, G., Li, G., Zhao, H. (2014). Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions. Nanoscale, 6, 5181-5192. DOI: 10.1039/C4NR00534A
  33. Gu, J., Zhang, Q., Li, H., Tang, Y., Kong, J., Dang, J. (2007). Study on Preparation of SiO2/Epoxy Resin Hybrid Materials by Means of Sol-Gel. Polymer-Plastics Technology and Engineering, 46, 1129-1134. DOI: 10.1080/03602550701558033
  34. Mrotek, E., Dudziak, S., Malinowska, I., Pelczarski, D., Ryzynska, Z., Zielinska-Jurek, A. (2020). Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst. Science of The Total Environment, 724, 1-12. DOI: 10.1016/j.scitotenv.2020.138167
  35. Ziaadini, F., Mostafavi, A., Shamspur, T., Fathirad, F. (2019). Photocatalytic degradation of Methylene blue from aqueous solution using Fe3O4@SiO2@CeO2 core-shell magnetic nanostructure as an effective catalyst. Advances in Environmental Technology, 2, 127-132. DOI: :10.22104/AET.2020.4137.1204
  36. Hariani P.L. Said M. Salni Rachmat A. Aprianti N. Sthephanie E.A. (2023). Synthesis of Fe3O4/SiO2/NiO magnetic composite: Evaluation of its catalytic activity for Methylene blue degradation. Global NEST Journal, 25(2), 36-43. DOI: 10.30955/gnj.004407
  37. Jayaraj, S.K., Sadishkumar, V., Arun, T. Thangadurai, P. (2018). Enhanced photocatalytic activity of V2O5 nanorods for the photodegradation of organic dyes: A detailed understanding of the mechanism and their antibacterial activity, Materials Science in Semiconductor Processing, 85, 122-133. DOI: 10.1016/j.mssp.2018.06.00
  38. Rahman, A., Aadil, M., Zulfiqar, S., Alsafari, I.A., Shahid, M., Agboola, P.O., Warsi, M.F., Abdel-Haliem, M.E.F. (2021). Fabrication of binary metal substituted CdO with superior aptitude for dye degradation and antibacterial activity. Ceramics International, 47, 8082-8093. DOI: 10.1016/j.ceramint.2020.11.163
  39. Rathnayake, I., Ismail, H., De Silva, C.R., Darsanasiri, N.D., Bose, I. (2015). Antibacterial effect of Ag-doped TiO2 nanoparticles incorporated natural rubber latex foam under visible light conditions. Iranian Polymer Journal, 24, 1057-1068. DOI: 10.1007/s13726-015-0393-5
  40. Liong, M., France, B., Bradley, K.A., Zink, J.I. (2009). Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Advances Materials, 21(17), 1684-1689. DOI: 10.1002/adma.200802646
  41. Jia, H., Zhang, X., Zeng, X., Cai, R., Wang, Z., Yuan, Y., Yue, T. (2021). Construction of silver nanoparticles anchored flower-like magnetic Fe3O4@SiO2@MnO2 hybrids with antibacterial and wound healing activity. Applied Surface Science, 567, 1-11. DOI: 10.1016/j.apsusc.2021.150797
  42. Hassani, A., Faraji, M., Eghbali, P. (2020). Facile fabrication of mpg-C3N4/Ag/ZnO nanowires/Zn photocatalyst plates for photodegradation of dye pollutant. Journal of Photochemistry & Photobiology A: Chemistry, 400, 1-15. DOI: 10.1016/j.jphotochem.2020.112665
  43. Ravichandran, K., Sindhuja, E. (2019). Fabrication of cost effective g-C3N4+Ag activated ZnO photocatalyst in thin film form for enhanced visible light responsive dye degradation. Materials Chemistry and Physics, 221, 203-215. DOI: 10.1016/j.matchemphys.2018.09.038
  44. Romdoni, Y., Kadja, G.T.M., Kitamoto, Y., Khalil, M. (2023). Synthesis of multifunctional Fe3O4@SiO2-Ag nanocomposite for antibacterial and anticancer drug delivery. Applied Surface Science, 610, 1-8. DOI: 10.1016/j.apsusc.2022.155610
  45. Yildiz, A., Bayramol, D.V., Atav, R., Agirgan, A.O., Kurc, M.A., Ergunay, U., Mayer, C., Hadimani, R.L. (2020). Synthesis and characterization of Fe3O4@Cs@Ag nanocomposite and its use in the production of magnetic and antibacterial nanofibrous membranes. Applied Surface Science, 521, 1-11, DOI: 10.1016/j.apsusc.2020.146332
  46. Ebrahimzadeh, M.A., Mortazavi‑Derazkola, S., Zazouli, M.A. (2019). Eco‑friendly green synthesis and characterization of novel Fe3O4/SiO2/Cu2O–Ag nanocomposites using Crataegus pentagyna fruit extract for photocatalytic degradation of organic contaminants. Journal of Materials Science: Materials in Electronics, 30, 10994-11004. DOI: 10.1007/s10854-019-01440-8
  47. Hariani, P.L., Said, M., Rachmat, A., Salni, S., Aprianti, N., Amatullah, A.F. (2022). Synthesis of NiFe2O4/SiO2/NiO Magnetic and Application for the Photocatalytic Degradation of Methyl orange dye under UV irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 17(4), 699-711. DOI: 10.9767/bcrec.17.4.15788.699-711
  48. Li, A., Xie, L., Zhou, S., Zhang, M., Ding, Y., Wang, P. (2021). Optimization of Fe3O4/SiO2/N-TiO2/Ag/AgCl core-shell nanomaterial and its properties, repeatability and photocatalytic mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 409, 1-11. doi: 10.1016/j.jphotochem.2021.113141
  49. Chi, Y., Yuan, Q., Li, Y., Tu, J., Zhao, L., Li, N., Li, X. (2012). Synthesis of Fe3O4@SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. Journal of Colloid and Interface Science, 383(1), 96-102. DOI: 10.1016/j.jcis.2012.06.027
  50. Shirazi, M., Allafchian, A., Salamati, H. (2023). Design and fabrication of magnetic Fe3O4-QSM nanoparticles loaded with ciprofloxacin as a potential antibacterial agent. International Journal of Biological Macromolecules, 241, 1-14. DOI: 10.1016/j.ijbiomac.2023.124517
  51. Ammar, S.H., Elaibi, A.I., Mohammed, I.S. (2020). Core/shell Fe3O4@Al2O3-PMo magnetic nanocatalyst for photocatalytic degradation of organic pollutants in an internal loop airlift reactor. Journal of Water Process Engineering, 37, 1-11. DOI: 10.1016/j.jwpe.2020.101240
  52. Boulahbel, H., Benamira, M., Bouremmad, F., Ahmia, N., Kiamouche, S., Lahmar, H., Souici, A., Trari, M. (2023). Enhanced photodegradation of Congo red dye under sunlight irradiation by p-n NiFe2O4/TiO2 heterostructure. Inorganic Chemistry Communications, 154, 1-12. DOI: 10.1016/j.inoche.2023.110921
  53. Firtina-Ertis, I., Kerkez-Kuyumcu, O. (2022). Synthesis of NiFe2O4/TiO2-Ag+S-scheme photocatalysts by a novel complex-assisted vapor thermal method for photocatalytic hydrogen production. Journal of Photochemistry & Photobiology, A: Chemistry, 432, 1-11. DOI: 10.1016/j.jphotochem.2022.114106
  54. Thomas, M., Naikoo, G.A., Sheikh, M.U.D., Bano, M., Khan, F. (2016). Effective photocatalytic degradation of Congo red dye using alginate/carboxymethyl cellulose/TiO2 nanocomposite hydrogel under direct sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 327, 33-43. DOI: 10.1016/j.jphotochem.2016.05.005
  55. Shaban, M., Ahmed, A.M., Shehata, N., Betiha, M.A., Rabie, M.A. (2020). Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of Methylene blue. Journal of Colloid and Interface Science, 555, 31-41. DOI: 10.1016/j.jcis.2019.07.070
  56. Magdalane, C.M., Jothi, A.I., Priyadharsini, G.M.A., Kaviyarasu, K., Simiyon, G.G. (2021). Synthesis and characterization of TiO2 doped cobalt ferrite nanoparticles via microwave method: Investigation of photocatalytic performance of Congo red degradation dye. Surfaces and Interfaces, 25, 1-14. DOI: 10.1016/j.surfin.2021.101296
  57. Zhu, L., Kong, X., Yang, C., Ren, B., Tang, Q. (2020). Fabrication and characterization of the magnetic separation photocatalyst C-TiO2@Fe3O4/AC with enhanced photocatalytic performance under visible light irradiation. Journal of Hazardous Materials, 381, 1-14. Doi: 10.1016/j.jhazmat.2019.120910
  58. Namdarian, A, Tabrizi, A.G., Arsalani, N., Khataee, A., Mohammadi, A. (2020). Synthesis of PANi nanoarrays anchored on 2D BiOCl nanoplates for photodegradation of Congo red in visible light region. Journal of Industrial and Engineering Chemistry, 81, 228-236. DOI: 10.1016/j.jiec.2019.09.012
  59. Shekardasht, M.B., Givianrad, M.H., Gharbani, P., Mirjafary, Z., Mehrizad, A. (2020). Preparation of a novel Z-scheme g-C3N4/RGO/Bi2Fe4O9 nanophotocatalyst for degradation of Congo red dye under visible light. Diamond and Related Materials, 109, 1-9. DOI: 10.1016/j.diamond.2020.108008
  60. Aboutaleb, W.A., El-Salamony, R.A. (2019). Effect of Fe2O3-CeO2 nanocomposite synthesis method on the Congo red dye photodegradation under visible light irradiation. Materials Chemistry and Physics, 236, 1-10. DOI: 10.1016/j.matchemphys.2019.121724
  61. Mandal, S., Adhikari, S., Pu, S., Wang, X., Kim, D., Patel, R.K. (2019). Interactive Fe2O3/porous SiO2 nanospheres for photocatalytic degradation of organic pollutants: kinetic and mechanistic approach. Chemosphere, 234, 596-607. DOI: 10.1016/j.chemosphere.2019.06.092
  62. Indira, K., Sathiyavimal, S., Shanmugam, S., Hari, A., Vasantharaj, S., Pugazhendhi, A., Brindhadevi, K., El Askary, A., Elfasakhany, A. (2021). Photocatalytic degradation of Congo red dye using nickel–titanium dioxide nanoflakes synthesized by Mukia madrasapatna leaf extract. Environmental Research, 202, 1-8. DOI: 10.1016/j.envres.2021.111647
  63. Pourzad, A., Sobhi, H.R., Behbahani, M., Esrafili, A., Kalantary, R.R., Kermani, M. (2020). Efficient visible Light-induced Photocatalytic Removal of Paraquat using N-doped TiO2@SiO2@Fe3O4 Nanocomposite. Journal of Molecular Liquids, 299, 1-7. DOI: 10.1016/j.molliq.2019.112167
  64. Saridewi, N., Komala, S., Zulys, A., Nurbayti, S., Tulhusna, L., Adawiah, A. (2022). Synthesis of ZnO-Fe3O4 magnetic nanocomposites through sonochemical methods for Methylene blue degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 17(3), 650-660. DOI: 10.9767/bcrec.17.3.15492.650-660
  65. Motlagh, P.Y., Khataee, A., Hassani, A., Orooji, Y. (2023). Facile and environmentally friendly synthesis of highly efficient two-dimensional hematene nanosheets for photocatalytic applications. Journal of Industrial and Engineering Chemistry, 1-15. DOI: 10.1016/j.jiec.2023.06.035
  66. Boudiaf, S., Nasrallah, N., Mellal, M., Belhamdi, B., Belabed, C., Djilali, M.A., Trari, M. (2021). Kinetic studies of Congo red photodegradation on the hetero-system CoAl2O4/ZnO with a stirred reactor under solar light. Journal of Environmental Chemical Engineering, 9(4), 1-13. DOI: 10.1016/j.jece.2021.105572
  67. Elkodous, M.A., El‑Khawaga., A.M., Abouelela, M.M., Maksoud, I.A.A. (2023). Cocatalyst loaded Al‑SrTiO3 cubes for Congo red dye photo‑degradation under wide range of light. Scientific Reports, 13, 1-13. DOI: 10.1038/s41598-023-33249-1
  68. Li, Y., Li, X., Li, J., Yin, J. (2006). Photocatalytic degradation of Methyl orange by TiO2-coated activated carbon and kinetic study. Water Research, 40(6), 119-26. DOI: 10.1016/j.watres.2005.12.042
  69. Hamad, H., El-Latif, M.A., Kashyout, A.E., Sadik, W., Feteha, M. (2015). Synthesis and characterization of core/shell/shell magnetic (CoFe2O4/SiO2/TiO2) nanocomposite and TiO2 nanoparticle for photocatalytic activity under UV and visible irradiation. New Journal of Chemistry, 39, 3116-3128. DOI: 10.1039/C4NJ01821D
  70. Patra, J.K., Baek, K.H. (2017). Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Frontier in Microbiology, 8, 1-14. DOI: 10.3389/fmicb.2017.00167
  71. Yin, I.X., Zhang, J., Zhao, I.S., Mei, M.L., Li, Q., Chu, C.H. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine, 15, 2555-2562. DOI: 10.2147/IJN.S246764
  72. Liao, C., Li, Y., Tjong, S.C. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. International Journal of Molecular Science, 20(2), 1-47. DOI: 10.3390/ijms20020449

Last update:

No citation recorded.

Last update:

No citation recorded.