skip to main content

Magnetization Study of Iron Sand from Sabang, Indonesia: The Potential of Magnetic Materials in the Photocatalytic Field

1Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia

2Department of Physics Engineering, Science and Technology Faculty, Universitas Islam Negeri Ar-Raniry Banda Aceh, 23111, Indonesia

3Department of Physics, Natural Science and Mathematics Faculty, Universitas Syiah Kuala Banda Aceh, 23111, Indonesia

4 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

View all affiliations
Received: 25 Jun 2023; Revised: 7 Aug 2023; Accepted: 8 Aug 2023; Available online: 17 Aug 2023; Published: 20 Aug 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The magnetization of iron sand from Anoi Itam beach, Sabang, Indonesia, was investigated through sample testing and synthesis using the co-precipitation method. The purpose of this study is to analyze the magnetic properties of iron sand and review its potential in photocatalytic processes. Before being synthesized, the natural iron sand was separated and milled. The iron sand was dissolved in 37% v/v HCl, stirred, and heated for 30 min. This solution was filtered and precipitated with 6.5 M NH4OH while stirring and heating for 30 min. The magnetite formed was washed repeatedly with distilled water until it reached a normal pH, and then dried. Magnetite characterization tests were performed using XRF, XRD, VSM, and UV-Vis spectroscopy. The test results showed that the iron sand had a high magnetic quality with a concentration of 91.17% after the synthesis process. The resulting magnetite phase structure had a spinal inverse cubic shape, with the highest peak at the Miller index (311). From the VSM test, it is known that the resulting magnetite exists in a soft magnetic form with superparamagnetic groups. From optical absorption, magnetite has a gap energy of approximately 2.8 eV. It can be concluded that the magnetite from Anoi Itam Sabang has potential as a photocatalytic absorbent in the visible light wavelength region. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Magnetite, co-precipitation method, iron sand, optical absorption, photocatalytic

Article Metrics:

  1. Kartika, D.L., Pratapa, S. (2014). Sintesis Fe2O3 dari Pasir Besi dengan Metode Logam terlarut asam klorida. Jurnal Sains dan Seni ITS, 3(2), B33–B35
  2. Taufiq, A., Bahtiar, S., Hidayat, N., Fuad, A., Diantoro, M., Hidayat, A., Pratapa, S., Darminto, D. (2012). Kajian Struktur Kristal Dan Dielektrisitas Nanopartikel Magnetite Berbasis Pasir Besi Doping Zn2+ Hasil Sintesis Metode Kopresipitasi. Jurnal Sains Materi Indonesia, 13(2), 153–156
  3. Simamora, P., Krisna, K. (2015). Sintesis Dan Karakterisasi Sifat Magnetik Nanokomposit Fe3O4–Montmorilonit Berdasarkan Variasi Suhu. Prosiding Seminar Nasional Fisika UNJ, IV, 75–80. Retrieved from https://journal.unj.ac.id/unj/index.php/prosidingsnf/article/view/5181
  4. Ganapathe, L.S., Mohamed, M.A., Yunus, R.M., Berhanuddin, D.D. (2020). Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation. Magnetochemistry, 6(4), 1–35. DOI: 10.3390/magnetochemistry6040068
  5. Morel, M., Martínez, F., Mosquera, E. (2013). Synthesis and characterization of magnetite nanoparticles from mineral magnetite. Journal of Magnetism and Magnetic Materials, 343, 76–81. DOI: 10.1016/j.jmmm.2013.04.075
  6. Mufti, N., Atma, T., Fuad, A., Sutadji, E. (2018). Synthesis and Characterization of Black, Red and Yellow Nanoparticles Pigments from the Iron Sand. AIP Conference Proceeding, 1617, 165–169. DOI: 10.1063/1.4897129
  7. Jalil, Z., Rahwanto, A., Mulana, F., and Handoko, E. (2019). Synthesis of nano-hematite (Fe2O3) extracted from natural iron ore prepared by mechanical alloying method. AIP Conference Proceedings, 2151, 020041, DOI: 10.1063/1.5124671
  8. Jalil, Z., Sari, E.N., AB, I., Handoko, E. (2014). Studi Komposisi Fasa dan Sifat Kemagnetan Pasir Besi Pesisir Pantai Aceh yang Dipreparasi dengan Metode Mechanical Milling. Indonesian Journal of Applied Physics, 04(1), 110–114
  9. Nengsih, S. (2019). Karakteristik Nanopartikel Magnetite Besi Oksida Lampanah Aceh Besar Melalui Metode Kopresipitasi. Elkawnie, 5(1), 76. DOI: 10.22373/ekw.v5i1.4517
  10. Bukit, N., Frida, E., Sinaga, P.S.T. (2015). Analisis Difraksi Nanopartikel Fe3O4 Metode Kopresipitasi Dengan Polietilen Glikol 6000. Prosiding Seminar Nasional Fisika, 4(7), 163–166
  11. Hayati, R., Astuti, A. (2015). Sintesis Nanopartikel Silika Dari Pasir Pantai Purus Padang Sumatera Barat Dengan Metode Kopresipitas. Jurnal Fisika Unand, 4(3), 282–287
  12. Rahmawati, R., Permana, M.G., Harison, B., Nugraha, N., Yuliarto, B., Suyatman, S., Kurniadi, D. (2017). Optimization of Frequency and Stirring Rate for Synthesis of Magnetite (Fe3O4) Nanoparticles by Using Coprecipitation- Ultrasonic Irradiation Methods. Procedia Engineering, 170, 55–59. DOI: 10.1016/j.proeng.2017.03.010
  13. Susilawati, S., Doyan, A., Taufik, M., Wahyudi, W., Gunawan, E.R., Kosim, K., Fitriani, A., Khair, H. (2018). Identifikasi Kandungan Fe pada Pasir Besi Alam di Kota Mataram. Jurnal Pendidikan Fisika dan Teknologi, 4(1), 105–110. DOI: 10.29303/jpft.v4i1.571
  14. Mascolo, M.C., Pei, Y., Ring, T.A. (2013). Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large ph Window with Different Bases. Materials, 6(12), 5549–5567. DOI: 10.3390/ma6125549
  15. Cheng, Z., Tan, A.L.K., Tao, Y., Shan, D., Ting, K.E., Yin, X.J. (2012). Synthesis and characterization of iron oxide nanoparticles and applications in the removal of heavy metals from industrial wastewater. International Journal of Photoenergy, 2012 DOI: 10.1155/2012/608298
  16. Awwad, A.M., Salem, N.M. (2013). A Green and Facile Approach for Synthesis of Magnetite Nanoparticles. Nanoscience and Nanotechnology, 2(6), 208–213. DOI: 10.5923/j.nn.20120206.09
  17. Nkurikiyimfura, I., Wang, Y., Safari, B., Nshingabigwi, E. (2020). Temperature-dependent magnetic properties of magnetite nanoparticles synthesized via coprecipitation method. Journal of Alloys and Compounds, 846, 156344. DOI: 10.1016/j.jallcom.2020.156344
  18. Sunaryono, S., Taufiq, A., Mashuri, M., Pratapa, S., Zainuri, M., Triwikantoro, T., Darminto, D. (2015). Various magnetic properties of magnetite nanoparticles synthesized from iron-sands by coprecipitation method at room temperature. Materials Science Forum, 827, 229–234. DOI: 10.4028/www.scientific.net/MSF.827.229
  19. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chemical Reviews, 108(6), 2064–2110. DOI: 10.1021/cr068445e
  20. Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A.R., Ali, J.S., Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49–67. DOI: 10.2147/NSA.S99986
  21. Aragaw, T.A., Bogale, F.M., Aragaw, B.A. (2021). Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. Journal of Saudi Chemical Society, 25(8), 101280. DOI: 10.1016/j.jscs.2021.101280
  22. Fernandes, Í.L., Barbosa, D.P., de Oliveira, S.B., da Silva, V.A., Sousa, M.H., Montero-Muñoz, M., Coaquira, J.A.H. (2022). Synthesis and characterization of the MNP@SiO2@TiO2 nanocomposite showing strong photocatalytic activity against methylene blue dye. Applied Surface Science, 580, 152195. DOI: 10.1016/j.apsusc.2021.152195
  23. Mufti, N., Munfarriha, U., Fuad, A., Diantoro, M. (2016). Synthesis and photocatalytic properties of Fe3O4@TiO2 core-shell for degradation of Rhodamine B. AIP Conference Proceedings, 1712, 050009. DOI: 10.1063/1.4941892
  24. Rani, N., Dehiya, B.S. (2020). Influence of anionic and non-ionic surfactants on the synthesis of core-shell Fe3O4@TiO2 nanocomposite synthesized by hydrothermal method. Ceramics International, 46(15), 23516–23525. DOI: 10.1016/j.ceramint.2020.06.122
  25. Gupta, A.K., Gupta, M. (2005). Synthesis and modification of iron oxide nanoparticles (magnetite) for biomedical applications. Biomaterials, 26(9), 3995–4021. DOI: 10.1016/j.biomaterials.2004.10.012
  26. Shen, L., Qiao, Y., Guo, Y., Meng, S., Yang, G., Wu, M., Zhao, J. (2014). Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceramics International, 40, 1519–1524. DOI: 10.1016/j.ceramint.2013.07.037
  27. Bisaria, K., Sinha, S., Singh, R., Iqbal, H.M.N. (2021). Recent advances in structural modifications of photo-catalysts for organic pollutants degradation – A comprehensive review. Chemosphere, 284, 131263. DOI: 10.1016/j.chemosphere.2021.131263
  28. Harifi, T., Montazer, M. (2014). A novel magnetic reusable nanocomposite with enhanced photocatalytic activities for dye degradation. Separation and Purification Technology, 134, 210–219. DOI: 10.1016/j.seppur.2014.06.042
  29. Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., He, Y. (2015). An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research, 79, 128–146. DOI: 10.1016/j.watres.2015.04.038
  30. Amir, M.N.I., Julkapli, N.M., Bagheri, S., Yousefi, A.T. (2015). TiO2 hybrid photocatalytic systems: Impact of adsorption and photocatalytic performance. Reviews in Inorganic Chemistry, 35(3), 151–178. DOI: 10.1515/revic-2015-0005
  31. Muhammad, M., Fatmaliana, A., Jalil, Z. (2019). Study of hematite mineral (Fe2O3) extracted from natural iron ore prepared by co-precipitation method, IOP Conf. Series: Earth and Environmental Science, 348 (012135), DOI: 10.1088/1755-1315/348/1/012135
  32. Govindhan, P., Pragathiswaran, C., Chinnadurai, M. (2018). A magnetic Fe3O4 decorated TiO2 nanoparticles application for photocatalytic degradation of methylene blue (MB) under direct sunlight irradiation. Journal of Materials Science: Materials in Electronics, 29(8), 6458–6469. DOI: 10.1007/s10854-018-8627-x
  33. Dubey, M., Kumar, R., Srivastava, S.K., Joshi, M. (2021). Visible light induced photodegradation of chlorinated organic pollutants using highly efficient magnetic Fe3O4/TiO2 nanocomposite. Optik, 243, 167309. DOI: 10.1016/j.ijleo.2021.167309
  34. Nadimi, M., Saravani, A.Z., Aroon, M.A., Pirbazari, A.E. (2019). Photodegradation of methylene blue by a ternary magnetic TiO2/Fe3O4/graphene oxide nanocomposite under visible light. Materials Chemistry and Physics, 225, 464–474. DOI: 10.1016/j.matchemphys.2018.11.029
  35. Wilson, M., Cheng, C.Y.C., Oswald, G., Srivastava, R., Beaumont, S.K., Badyal, J.P.S. (2017). Magnetic recyclable microcomposite silica-steel core with TiO2 nanocomposite shell photocatalysts for sustainable water purification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 523, 27–37. DOI: 10.1016/j.colsurfa.2017.03.034
  36. Sun, A.C. (2018). Synthesis of magnetic carbon nanodots for recyclable photocatalytic degradation of organic compounds in visible light. Advanced Powder Technology, 29(3), 719–725. DOI: 10.1016/j.apt.2017.12.013
  37. Su, T.L., Chiou, C.S., Chen, H.W. (2012). Preparation, photocatalytic activity, and recovery of magnetic photocatalyst for decomposition of benzoic acid. International Journal of Photoenergy, 2012, 909678. DOI: 10.1155/2012/909678
  38. Handoko, E., Budi, E., Sugihartono, I., Marpaung, M.A., Jalil, Z., Taufiq, A., Alaydrus, M. (2020). Microwave absorption performance of barium hexaferrite multi-nanolayers. Materials Express, 10(8), 1328-1336. DOI: 10.1166/mex.2020.1811

Last update:

No citation recorded.

Last update:

No citation recorded.