skip to main content

Synthesis of NiO/Ni Electrocatalyst at Different pH Values and the Application for Electrochemical Degradation of Textile Waste

Department of Chemistry, Universitas Pendidikan Ganesha, Jl. Udayana Singaraja, Bali, Indonesia

Received: 21 Jun 2023; Revised: 29 Jul 2023; Accepted: 30 Jul 2023; Available online: 2 Aug 2023; Published: 20 Aug 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

An electrocatalyst is a material that exhibits catalytic activity for electrochemical reactions. The electrocatalytic properties within electrochemical cells can be enhanced by modifying the electrode through an electrodeposition process. Therefore, this study aimed to synthesize NiO/Ni electrocatalyst using the electrodeposition method at pH values of 8, 10, and 12. The NiO/Ni generated was applied in the electrochemical degradation of textile waste under specific operating conditions, including pH 4, NaCl concentration of 0.05 M, DC voltage of 9 volts, and varying degradation times of 60, 120, 180, and 240 min. Based on the results, the XRD diffractograms revealed the presence of NiO peaks at 2θ = 43.5°, 63.1°, and 75.4°, and Ni peaks at 2θ = 51.9°. SEM-EDX analysis showed that NiO/Ni was deposited on the graphite surface in the form of spheres and granules. FTIR indicated the presence of Ni−O bonds at 501 cm1, and GSA demonstrated that NiO/Ni exhibited mesoporous properties. The NiO/Ni at pH 10 had the highest surface area, pore volume, and current response compared to graphite, as well as the electrocatalyst produced at pH 8 and 12. Additionally, the electrochemical degradation of textile waste using NiO/Ni at pH 10 led to the highest reduction in absorbance efficiency, chemical oxygen demand (COD), and ammonia, with respective values of 96.80, 96.15, and 87.34%. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: NiO/Ni electrocatalyst; electrochemical degradation; textile waste
Funding: Universitas Pendidikan Ganesha

Article Metrics:

  1. Patel, P.S., Bandre, N., Saraf, A., Ruparelia, J.P. (2013). Electro-Catalytic Materials (Electrode Materials) in Electrochemical Wastewater Treatment. Procedia Engineering, 51, 430–435. DOI: 10.1016/j.proeng.2013.01.060
  2. Jaksic, M.M., Schmickleer, W., Botton, G. (2012). Advances in Electrocatalysis. Advances in Physical Chemistry, 2012, 180604. DOI: 10.1155/2012/180604
  3. Jinisha, R., Gandhimathi, R., Ramesh, S.T., Nidheesh, P. V., Velmathi, S. (2018). Removal of Rhodamine B Dye from Aqueous Solution by Electro-Fenton Process Using Iron-doped Mesoporous Silica as a Heterogeneous Catalyst. Chemosphere, 200, 446–454. DOI: 10.1016/j.chemosphere.2018.02.117
  4. Döner, A., Telli, E., Kardaş, G. (2012). Electrocatalysis of Ni-Promoted Cd Coated Graphite Toward Methanol Oxidation in Alkaline Medium. Journal of Power Sources, 205, 71–79. DOI: 10.1016/j.jpowsour.2012.01.020
  5. Ding, R., Li, X., Shi, W., Xu, Q., Wang, L., Jiang, H., Yang, Z., Liu, E. (2016). Mesoporous Ni-P Nanocatalysts for Alkaline Urea Electrooxidation. Electrochimica Acta, 222, 455–462. DOI: 10.1016/j.electacta.2016.10.198
  6. Alotaibi, R., Alenazey, F., Alotaibi, F., Wei, N., Al-Fatesh, A., Fakeeha, A. (2015). Ni Catalysts with Different Promoters Supported on Zeolite for Dry Reforming of Methane. Applied Petrochemical Research, 5(4), 329–337. DOI: 10.1007/s13203-015-0117-y
  7. Kannan, R., Govindan, K., Selvaraj, S., Ravichandiran, P., Vasanthkumar, S. (2013). Birnessite Nanorod-mediated Decomposition of Methylene Blue with Common Oxidants. Applied Water Science, 3(1), 335–341. DOI: 10.1007/s13201-012-0058-x
  8. Ahmed, J., Ahamad, T., Al Shehri, S.M. (2017). Iron–Nickel Nanoparticles as Bifunctional Catalysts in Water Electrolysis. Chemelectrochem, 4(5), 1222–1226. DOI: 10.1002/celc.201600754
  9. He, S., Zhang, L., He, S., Mo, L., Zheng, X., Wang, H., Luo, Y. (2015). Ni/SiO2 Catalyst Prepared with Nickel Nitrate Precursor for Combination of CO2 Reforming and Partial Oxidation of Methane: Characterization and Deactivation Mechanism Investigation. Journal of Nanomaterials, 2015, 659402. DOI: 10.1155/2015/659402
  10. Feng, Z., Wang, L., Li, D., Sun, Q., Xing, P., An, M. (2019). Electrochemical Studies of 2-Aminopyridine on Nanocrystalline Zn–Ni Alloy Electrodeposition. Journal of Electroanalytical Chemistry, 835, 114–122. DOI: 10.1016/j.jelechem.2019.01.038
  11. Yan, W., Wang, D., Botte, G.G. (2012). Electrochemical Decomposition of Urea with Ni-Based Catalysts. Applied Catalysis B: Environmental, 127, 221–226. DOI: 10.1016/j.apcatb.2012.08.022
  12. Kawade, U.V., Kadam, S.R., Kulkarni, M.V., Kale, B.B. (2020). Synergic Effects of the Decoration of Nickel Oxide Nanoparticles on Silicon for Enhanced Electrochemical Performance in LIBs. Nanoscale Advances, 2(2), 823–832. DOI: 10.1039/c9na00727j
  13. Basharat, F., Rana, U.A., Shahid, M., Serwar, M. (2015). Heat Treatment of Electrodeposited NiO Films for Improved Catalytic Water Oxidation. RSC Advances, 5(105), 86713–86722. DOI: 10.1039/c5ra17041a
  14. Sonavane, A.C., Inamdar, A.I., Shinde, P.S., Deshmukh, H.P., Patil, R.S., Patil, P.S. (2010). Efficient Electrochromic Nickel Oxide Thin Films by Electrodeposition. Journal of Alloys and Compounds, 489(2), 667–673. DOI: 10.1016/j.jallcom.2009.09.146
  15. Shestakova, M., Sillanpää, M. (2017). Electrode Materials Used for Electrochemical Oxidation of Organic Compounds in Wastewater. Reviews in Environmental Science and Biotechnology, 16(2), 223–238. DOI: 10.1007/s11157-017-9426-1
  16. Ijeh, R.O., Nwanya, A.C., Nkele, A.C., Madiba, I.G., Khumalo, Z., Bashir, A.K.H., Osuji, R.U., Maaza, M., Ezema, F.I. (2019). Magnetic and Optical Properties of Electrodeposited Nanospherical Copper Doped Nickel Oxide Thin Films. Physica E: Low-Dimensional Systems and Nanostructures, 113, 233–239. DOI: 10.1016/j.physe.2019.05.013
  17. Bard, A.J., Faulkner, L.R. (2001). Electrochemical Methods Fundamentals and Application
  18. Trasatti, S. (1992). Adsorption of Organic Substances at Electrodes: Recent Advances. Electrochimica Acta, 37(12), 2137–2144. DOI: 10.1016/0013-4686(92)85104-S
  19. Huang, L.F., Hutchison, M.J., Santucci, R.J., Scully, J.R., Rondinelli, J.M. (2017). Improved Electrochemical Phase Diagrams from Theory and Experiment: The Ni-Water System and Its Complex Compounds. Journal of Physical Chemistry C, 121(18), 9782–9789. DOI: 10.1021/acs.jpcc.7b02771
  20. Huang, L.-F., Rondinelli, J.M. (2019). Reliable Electrochemical Phase Diagrams of Magnetic Transition Metals and Related Compounds from High-Throughput AB Initio Calculations. npj Materials Degradation, 3(1), 26. DOI: 10.1038/s41529-019-0088-z
  21. Ajeel, M.A., Aroua, M.K., Daud, W.M.A.W. (2015). Anodic Degradation of 2-Chlorophenol by Carbon Black Diamond and Activated Carbon Composite Electrodes. Electrochimica Acta, 180, 22–28. DOI: 10.1016/j.electacta.2015.08.062
  22. Mukimin, A., Wijaya, K., Kuncaka, A. (2010). Electrodegradation of Reactive Blue Dyes Using Cylinder Modified Electrode: Ti/β-PbO2 as Dimensionally Stable Anode. Indonesian Journal of Chemistry, 10(3), 285–289. DOI: 10.22146/ijc.21431
  23. Kaur, P., Kushwaha, J.P., Sangal, V.K. (2018). Electrocatalytic Oxidative Treatment of Real Textile Wastewater in Continuous Reactor: Degradation Pathway and Disposability Study. Journal of Hazardous Materials, 346, 242–252. DOI: 10.1016/j.jhazmat.2017.12.044
  24. Azaceta, E., Chavhan, S., Rossi, P., Paderi, M., Fantini, S., Ungureanu, M., Miguel, O., Grande, H.J., Tena-Zaera, R. (2012). NiO Cathodic Electrochemical Deposition from an Aprotic Ionic Liquid: Building Metal Oxide N-P Heterojunctions. Electrochimica Acta, 71, 39–43. DOI: 10.1016/j.electacta.2012.03.093
  25. Koussi-Daoud, S., Majerus, O., Schaming, D., Pauporté, T. (2016). Electrodeposition of NiO Films and Inverse Opal Organized Layers from Polar Aprotic Solvent-Based Electrolyte. Electrochimica Acta, 219, 638–646. DOI: 10.1016/j.electacta.2016.10.074
  26. Popova, A.N. (2017). Crystallographic Analysis of Graphite by X-Ray Diffraction. Coke and Chemistry, 60(9), 361–365. DOI: 10.3103/S1068364X17090058
  27. Fan, M., Ren, B., Yang, X., Yu, H., Wang, L. (2019). NiO@NiO and NiO@Co 3 O 4 Hollow Core/Shell Composites for High-Performance Supercapacitor Electrodes. Journal of Nanoscience and Nanotechnology, 19(12), 7785–7789. DOI: 10.1166/jnn.2019.16857
  28. Kim, H.B., Kim, H., Sohn, H.S., Son, I., Lee, H.S. (2013). Effect of pH on the Morphological Evolution of NiO Thin Film Synthesized on ZnO Nanorod Arrays by Electrodeposition and Post-Annealing. Materials Letters, 101, 65–68. DOI: 10.1016/j.matlet.2013.03.077
  29. Li, R., Hou, Y., Liu, B., Wang, D., Liang, J. (2016). Electrodeposition of Homogenous Ni/SiO2 Nanocomposite Coatings from Deep Eutectic Solvent with In-situ Synthesized SiO2 Nanoparticles. Electrochimica Acta, 222, 1272–1280. DOI: 10.1016/j.electacta.2016.11.101
  30. Rebelo, Q.H.F., Ferreira, C.S., Santos, P.L., Bonacin, J.A., Passos, R.R., Pocrifka, L.A., Paula, M.M.S. (2019). Synthesis and Characterization of a Nanocomposite NiO/SiO2 from a Sustainable Source of SiO2. Particulate Science and Technology, 37(8), 907–911. DOI: 10.1080/02726351.2018.1455781
  31. Krishnakumar, B., Kumar, S., Gil, J.M., Mani, D., Arivanandhan, M., Sobral, A.J.F.N. (2019). Synthesis and Characterization of g/Ni–SiO2 Composite for Enhanced Hydrogen Storage Applications. International Journal of Hydrogen Energy, 44(41), 23249–23256. DOI: 10.1016/j.ijhydene.2019.07.073
  32. Liang, K., Tang, X., Hu, W. (2012). High-Performance Three-Dimensional Nanoporous NiO Film as a Supercapacitor Electrode. Journal of Materials Chemistry, 22(22), 11062–11067. DOI: 10.1039/c2jm31526b
  33. Zhang, J., Zhang, D., Liu, Y. (2019). Ni–SiO2 Nanoporous Composite as an Efficient Electrocatalyst for the Electrooxidation of Hydrogen Peroxide. Journal of Materials Science: Materials in Electronics, 30(15), 13895–13909. DOI: 10.1007/s10854-019-01707-0
  34. Zhang, X., Wang, T., Ma, L., Zhang, Q., Yu, Y., Liu, Q. (2013). Characterization and Catalytic Properties of Ni and NiCu Catalysts Supported on ZrO2-SiO2 for Quaiacol Hydrodeoxygenation. Catalysis Communications, 33, 15–19. DOI: 10.1016/j.catcom.2012.12.011
  35. Bi, Q., Guan, W., Gao, Y., Cui, Y., Ma, S., Xue, J. (2019). Study of The Mechanisms Underlying The Effects of Composite Intermediate Layers on The Performance of Ti/SnO2-Sb-La Electrodes. Electrochimica Acta, 306, 667–679. DOI: 10.1016/j.electacta.2019.03.122
  36. Mukimin, A., Vistanty, H., Zen, N. (2015). Oxidation of Textile Wastewater Using Cylinder Ti/β-PbO2 Electrode in Electrocatalytic Tube Reactor. Chemical Engineering Journal, 259, 430–437. DOI: 10.1016/j.cej.2014.08.020
  37. Garcia-Segura, S., Ocon, J.D., Chong, M.N. (2018). Electrochemical oxidation remediation of real wastewater effluents — A review. Process Safety and Environmental Protection, 113, 48–67. DOI: 10.1016/j.psep.2017.09.014
  38. Särkkä, H., Bhatnagar, A., Sillanpää, M. (2015). Recent developments of electro-oxidation in water treatment - A review. Journal of Electroanalytical Chemistry, 754, 46–56. DOI: 10.1016/j.jelechem.2015.06.016
  39. Samarghandi, M.R., Dargahi, A., Shabanloo, A., Nasab, H.Z., Vaziri, Y., Ansari, A. (2020). Electrochemical Degradation of Methylene Blue Dye Using a Graphite Doped PbO2 Anode: Optimization of Operational Parameters, Degradation Pathway and Improving the Biodegradability of Textile Wastewater. Arabian Journal of Chemistry, 13(8), 6847–6864. DOI: 10.1016/j.arabjc.2020.06.038
  40. Droguett, T., Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Mestre, S., Cifuentes, G., Pérez-Herranz, V. (2020). Electrochemical Degradation of Reactive Black 5 Using Two-different Reactor Configuration. Scientific Reports, 10(1), 1–11. DOI: 10.1038/s41598-020-61501-5
  41. Rivera, M., Pazos, M., Sanromán, M.Á. (2011). Development of an Electrochemical Cell for The Removal of Reactive Black 5. Desalination, 274(1–3), 39–43. DOI: 10.1016/j.desal.2011.01.074
  42. Tang, Y., He, D., Guo, Y., Qu, W., Shang, J., Zhou, L., Pan, R., Dong, W. (2020). Electrochemical Oxidative Degradation of X-6G Dye by Boron-Doped Diamond Anodes: Effect of Operating Parameters. Chemosphere, 258, 127368. DOI: 10.1016/j.chemosphere.2020.127368
  43. Basha, C.A., Sendhil, J., Selvakumar, K. V., Muniswaran, P.K.A., Lee, C.W. (2012). Electrochemical Degradation of Textile Dyeing Industry Effluent in Batch and Flow Reactor Systems. Desalination, 285, 188–197. DOI: 10.1016/j.desal.2011.09.054
  44. Najafpoor, A.A., Davoudi, M., Rahmanpour Salmani, E. (2017). Decolorization of Synthetic Textile Wastewater Using Electrochemical Cell Divided by Cellulosic Separator. Journal of Environmental Health Science and Engineering, 15(1), 1–11. DOI: 10.1186/s40201-017-0273-3
  45. Samarghandi, M.R., Nemattollahi, D., Asgari, G., Shokoohi, R., Ansari, A., Dargahi, A. (2018). Electrochemical Process for 2,4-D Herbicide Removal from Aqueous Solutions Using Stainless Steel 316 and Graphite Anodes: Optimization Using Response Surface Methodology. Separation Science and Technology (Philadelphia), 54(4), 478–493. DOI: 10.1080/01496395.2018.1512618
  46. Zou, J., Peng, X., Li, M., Xiong, Y., Wang, B., Dong, F., Wang, B. (2017). Electrochemical Oxidation of COD from Real Textile Wastewaters: Kinetic Study and Energy Consumption. Chemosphere, 171, 332–338. DOI: 10.1016/j.chemosphere.2016.12.065
  47. Kapałka, A., Joss, L., Anglada, Á., Comninellis, C., Udert, K.M. (2010). Direct and Mediated Electrochemical Oxidation of Ammonia on Boron-Doped Diamond Electrode. Electrochemistry Communications, 12(12), 1714–1717. DOI: 10.1016/j.elecom.2010.10.004
  48. Wang, Y., Guo, X., Li, J., Yang, Y., Lei, Z., Zhang, Z. (2012). Efficient Electrochemical Removal of Ammonia with Various Cathodes and Ti/RuO-Pt Anode. Open Journal of Applied Sciences, 02(04), 241–247. DOI: 10.4236/ojapps.2012.24036
  49. Yao, J., Mei, Y., Xia, G., Lu, Y., Xu, D., Sun, N., Wang, J., Chen, J. (2019). Process optimization of Electrochemical Oxidation of Ammonia to Nitrogen for Actual Dyeing Wastewater Treatment. International Journal of Environmental Research and Public Health, 16(16) DOI: 10.3390/ijerph16162931
  50. Yuan, F., Dai, J.G., Liang, Z.H., Fan, H.B., Lv, S.H. (2013). Study on the Conversion of Ammonia by Electrochemical Oxidation. Advanced Materials Research, 807–809, 1355–1361. DOI: 10.4028/www.scientific.net/AMR.807-809.1355
  51. Mandor, H., El-Ashtoukhy, E.S.Z., Abdelwahab, O., Amin, N.K., Kamel, D.A. (2022). A Flow-Circulation Reactor for Simultaneous Photocatalytic Degradation of Ammonia and Phenol Using N-Doped ZnO Beads. Alexandria Engineering Journal, 61(5), 3385–3401. DOI: 10.1016/j.aej.2021.08.052

Last update:

No citation recorded.

Last update:

No citation recorded.