skip to main content

Catalytic Conversion of 5-Hydroxymethylfurfural and Fructose to 5-Ethoxymethylfurfural over Sulfonated Biochar Catalysts

College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China

Received: 1 Jun 2023; Revised: 30 Jun 2023; Accepted: 1 Jul 2023; Available online: 4 Jul 2023; Published: 30 Jul 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

5-Hydroxymethylfurfural (HMF) is a key platform compound that can be produced by the dehydration of typical carbohydrates like glucose and fructose. Among the derivatives of HMF, 5-ethoxymethylfurfural (EMF) is the etherification product of HMF with ethanol. Owing to some advantages (i.e., high energy density), EMF has been regarded as a potential liquid fuel. Therefore, catalytic conversion of   HMF and fructose to EMF is of significance, especially using heterogeneous catalysts. In this paper, we demonstrated the preparation of biomass-based catalysts for the synthesis of EMF from HMF and fructose. Some sulfonated biochar catalysts were prepared by the carbonization of biomass-based precursors at high temperature in N2, followed by the subsequent sulfonation process employing concentered H2SO4 as sulfonation reagent. The obtained catalysts were characterized by scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), and element analysis. The catalytic conversion of HMF to EMF was carried out in ethanol, providing a 78% yield with complete conversion at 120 °C. The catalytic activity of the used catalyst showed slight decrease for the etherification of HMF. Moreover, the catalysts were effective for the direct conversion of fructose towards EMF in 64.9% yield. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: biomass; 5-hydroxymethylfurfural; 5-ethoxymethylfurfural; etherification; solid acid
Funding: Natural Science Foundation of Chongqing under contract cstc2020jcyj-msxmX0672; Science and Technology Research Program of Chongqing Municipal Education Commission under contract Grant No. KJQN202000826 and KJQN202200844; Start-up Foundation of High-level Talents under contract 1956037; Graduate Innovative Research Project from Chongqing Technology and Business University under contract yjscxx2022-112-38

Article Metrics:

  1. Shao, Y., Ding, Y., Dai, J., Long, Y., Hu, Z.-T. (2021). Synthesis of 5-hydroxymethylfurfural from dehydration of biomass-derived glucose and fructose using supported metal catalysts. Green Synthesis and Catalysis, 2(2), 187-197. DOI: 10.1016/j.gresc.2021.01.006
  2. Hou, Q., Qi, X., Zhen, M., Qian, H., Nie, Y., Bai, C., Zhang, S., Bai, X., Ju, M. (2021). Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chemistry, 23(1), 119-231. DOI: 10.1039/D0GC02770G
  3. Kong, Q., Li, X., Xu, H., Fu, Y. (2020). Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications. Fuel Processing Technology, 209, 106528. DOI: 10.1016/j.fuproc.2020.106528
  4. Guo, H., Dowaki, T., Shen, F., Qi, X., Smith Jr, R.L. (2022). Critical assessment of reaction pathways for next-generation biofuels from renewable resources: 5-ethoxymethylfurfural. ACS Sustainable Chemistry & Engineering, 10(28), 9002-9021. DOI: 10.1021/acssuschemeng.2c01303
  5. Chen, B., Yan, G., Chen, G., Feng, Y., Zeng, X., Sun, Y., Tang, X., Lei, T., Lin, L. (2020). Recent progress in the development of advanced biofuel 5-ethoxymethylfurfural. BMC Energy, 2, 2. DOI: 10.1186/s42500-020-00012-5
  6. Zuo, M., Lin, L., Zeng, X. (2023). The synthesis of potential biofuel 5-ethoxymethylfurfural: A review. Fuel, 343, 127863. DOI: 10.1016/j.fuel.2023.127863
  7. Mascal, M., Nikitin, E.B. (2009). Towards the Efficient, Total Glycan Utilization of Biomass. ChemSusChem, 2(5), 423-426. DOI: 10.1002/cssc.200900071
  8. Gruter, G.J.M., Dautzenberg, F. (2012). Method for the synthesis of 5-alkoxymethyl furfural ethers and their use. U.S. Patent No. 8,133,289
  9. Alipour, S., Omidvarborna, H., Kim, D.-S. (2017). A review on synthesis of alkoxymethyl furfural, a biofuel candidate. Renewable and Sustainable Energy Reviews, 71, 908-926. DOI: 10.1016/j.rser.2016.12.118
  10. Lai, L., Zhang, Y. (2011). The Production of 5-Hydroxymethylfurfural from Fructose in Isopropyl Alcohol: A Green and Efficient System. ChemSusChem, 4(12), 1745-1748. DOI: 10.1002/cssc.201100489
  11. Balakrishnan, M., Sacia, E.R., Bell, A.T. (2012). Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chemistry. 14(6), 1626-1634. DOI: 10.1039/c2gc35102a
  12. Liu, B., Zhang, Z., Huang, K., Fang, Z. (2013). Efficient conversion of carbohydrates into 5-ethoxymethylfurfural in ethanol catalyzed by AlCl3. Fuel, 113, 625-631, DOI: 10.1016/j.fuel.2013.06.015
  13. Yang, Y., Abu-Omar, M.M., Hu, C. (2012). Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate. Applied Energy, 99, 80-84. DOI: 10.1016/j.apenergy.2012.04.049
  14. Liu, A., Liu, B., Wang, Y., Ren, R., Zhang, Z. (2014). Efficient one-pot synthesis of 5-ethoxymethylfurfural from fructose catalyzed by heteropolyacid supported on K-10 clay. Fuel, 117, 68-73. DOI: 10.1016/j.fuel.2013.09.072
  15. Wang, S., Zhang, Z., Liu, B., Li, J. (2013). Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catalysis Science & Technology, 3(8), 2104-2112. DOI: 10.1039/c3cy00223c
  16. Liu, B., Zhang, Z. (2013). One-pot conversion of carbohydrates into 5-ethoxymethylfurfural and ethyl D-glucopyranoside in ethanol catalyzed by a silica supported sulfonic acid catalyst. RSC Advances, 3(30), 12313-12319. DOI: 10.1039/c3ra41043a
  17. Thombal, R.S., Jadhav, V.H. (2016). Application of glucose derived magnetic solid acid for etherification of 5-HMF to 5-EMF, dehydration of sorbitol to isosorbide, and esterification of fatty acids. Tetrahedron Letters, 57(39), 4398-4400. DOI: 10.1016/j.tetlet.2016.08.061
  18. Wang, H., Deng, T., Wang, Y., Cui, X., Qi, Y., Mu, X., Hou, X., Zhu, Y. (2013). Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural. Green Chemistry, 15(9), 2379-2383. DOI: 10.1039/c3gc41109e
  19. Li, H., Saravanamurugan, S., Yang, S., Riisager, A. (2016). Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts. Green Chemistry, 18(3), 726-734. DOI: 10.1039/c5gc01043h
  20. Liu, B., Zhang, Z., Huang, K. (2013). Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose. Cellulose, 20(4), 2081-2089. DOI: 10.1007/s10570-013-9944-0
  21. Yu, X., Peng, L., Gao, X., He, L., Chen, K. (2018). One-step fabrication of carbonaceous solid acid derived from lignosulfonate for the synthesis of biobased furan derivatives. RSC Advances, 8, 15762-15772. DOI: 10.1039/C8RA02056F
  22. Dowaki, T., Guo, H., Smith, R.L. (2022). Lignin-derived biochar solid acid catalyst for fructose conversion into 5-ethoxymethylfurfural. Renewable Energy, 199, 1534-1542. DOI: 10.1016/j.renene.2022.09.074
  23. Nie, Y., Hou, Q., Qian, H., Bai, X., Xia, T., Lai, R., Yu, G., Rehman, M.L.U., Ju, M. (2022). Synthesis of mesoporous sulfonated carbon from chicken bones to boost rapid conversion of 5-hydroxymethylfurfural and carbohydrates to 5-ethoxymethylfurfural. Renewable Energy, 192, 279-288. DOI: 10.1016/j.renene.2022.04.105
  24. Chen, T., Peng, L., Yu, X., He, L. (2018). Magnetically recyclable cellulose-derived carbonaceous solid acid catalyzed the biofuel 5-ethoxymethylfurfural synthesis from renewable carbohydrates. Fuel, 219, 344-352. DOI: 10.1016/j.fuel.2018.01.129
  25. Chen, X., Yang, H., Yan, N. (2016). Shell biorefinery: dream or reality?. Chemistry–A European Journal, 22(38), 13402-13421. DOI: 10.1002/chem.201602389
  26. Dai, J., Li, F., Fu, X. (2020). Towards shell biorefinery: advances in chemical‐catalytic conversion of chitin biomass to organonitrogen chemicals. ChemSusChem, 13(24), 6498-6508. DOI: 10.1002/cssc.202001955
  27. Dai, J., Liu, Z., Hu, Y., Liu, S., Chen, L., Qi, T., Yang, H., Zhu, L., Hu, C. (2019). Adjusting the acidity of sulfonated organocatalyst for the one-pot production of 5-ethoxymethylfurfural from fructose. Catalysis Science & Technology, 9(2), 483-492. DOI: 10.1039/c8cy02010h
  28. Dai, J., Zhu, L., Tang, D., Fu, X., Tang, J., Guo, X., Hu, X. (2017). Sulfonated polyaniline as a solid organocatalyst for dehydration of fructose into 5-hydroxymethylfurfural. Green Chemistry, 19(8), 1932-1939. DOI: 10.1039/c6gc03604j
  29. Gao, Y., Chen, X., Zhang, J., Yan, N. (2015). Chitin-Derived Mesoporous, Nitrogen-Containing Carbon for Heavy-Metal Removal and Styrene Epoxidation. ChemPlusChem, 80, 1556-1564. DOI: 10.1002/cplu.201500293
  30. Russo, P.A., Antunes, M.M., Neves, P., Wiper, P.V., Fazio, E., Neri, F., Barreca, F., Mafra, L., Pillinger, M., Pinna, N. (2014) Solid acids with SO3H groups and tunable surface properties: versatile catalysts for biomass conversion. Journal of Materials Chemistry A, 2(30), 11813-11824. DOI: 10.1039/c4ta02320j
  31. Suganuma, S., Nakajima, K., Kitano, M., Hayashi, S., Hara, M. (2012). sp3‐Linked Amorphous Carbon with Sulfonic Acid Groups as a Heterogeneous Acid Catalyst. ChemSusChem, 5(9), 1841-1846. DOI: 10.1002/cssc.201200010
  32. Guo, H., Hirosaki, Y., Qi, X., Smith Jr, R.L. (2020). Synthesis of ethyl levulinate over amino-sulfonated functional carbon materials. Renewable Energy, 157, 951-958. DOI: 10.1016/j.renene.2020.05.103
  33. Tsilomelekis, G., Josephson, T.R., Nikolakis, V., Caratzoulas, S. (2014). Origin of 5‐hydroxymethylfurfural stability in water/dimethyl sulfoxide mixtures. ChemSusChem, 7(1), 117-126. DOI: 10.1002/cssc.201301221
  34. Ren, L.-K., Zhu, L.-F., Qi, T., Tang, J.-Q., Yang, H.-Q., Hu, C.-W. (2017). Performance of dimethyl sulfoxide and Brønsted acid catalysts in fructose conversion to 5-hydroxymethylfurfural. ACS Catalysis, 7(3), 2199-2212. DOI: 10.1021/acscatal.6b01802
  35. Ngaosuwan, K., Goodwin Jr, J.G., Prasertdham, P. (2016). A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renewable Energy, 86, 262-269. DOI: 10.1016/j.renene.2015.08.010

Last update:

No citation recorded.

Last update:

No citation recorded.