skip to main content

The Effect of Variations in Calcination Temperature on the Character of ZnO and ZnO/Mopl-CTAB in Degrading Methyl Orange

1Department of Chemistry, Faculty of Agriculture, Universitas Islam Kadiri, Kediri 64128, Indonesia

2Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

Received: 26 May 2023; Revised: 6 Jul 2023; Accepted: 6 Jul 2023; Available online: 10 Jul 2023; Published: 20 Aug 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Medan orange peel (Mopl), which has been modified using cetyltrimethylammonium bromide (CTAB), has the potential to adsorb methyl orange (MO), and thus it can be used as a supporting material for ZnO. The ZnO is a photocatalytic material that is environmentally friendly, inexpensive, non-toxic, and has a wide band gap value. This study aims to determine the effect of calcination temperature on ZnO and ZnO characteristics due to modification using Mopl-CTAB and its effect on the degradation of MO. This research was carried out by synthesizing ZnO and ZnO/Mopl-CTAB materials using impregnation method and varying the calcination temperatures at 150, 250, 350, and 450 °C. The solid material powder obtained was characterized by using Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX), Brunauer–Emmett–Teller (BET), Fourier Transform Infra Red (FTIR), X-ray Diffraction (XRD), and Diffuse Reflectance Spectroscopy (DRS). Based on the results of the characterization, greater calcination temperature can affect the characteristics of the photocatalyst, including its morphology, functional groups, crystal structure, crystal lattice, crystallinity, surface area, pore size, pore volume, and energy band gap. The MO photodegradation activity test using the synthesized material was conducted under dark and light conditions. The results of the test revealed that the best or optimum material to be used in degrading MO is a calcined material at 450 °C under light conditions. ZnO material using Mopl-CTAB is better in degrading ZnO/Mopl-CTAB 450 °C than ZnO 450 °C. This study found that ZnO material using Mopl-CTAB  had a percent removal of 78% in 50 min, while ZnO 450 °C only had a percent removal of 53% in 40 min. The reaction kinetics in dark and light conditions follow the pseudo-second-order kinetic model. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: ZnO; ZnO/Mopl-CTAB; Calcination Temperature, Methyl Orange, Photodegradation
Funding: Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia under contract Contract Number of No. 075/E5/P6.02.00.PT/2022 and Subsidiary Contract Number of No. 014/SP2H/PT-L/LL7/2022 and No. 01/040.1/PN.02.01/L/III/2022

Article Metrics:

  1. Pratisarawirya, G.L. (2020). Analisis kualitas air akibat limbah tekstil di sungai samin kecamatan mojolaban kabupaten sukoharjo. Skripsi (Undergraduate Thesis). Program Studi Geografi. Universitas Muhammadiyah Surakarta
  2. Raganata, T.C., Aritonang, H., Suryanto, E. (2020). Sintesis Fotokatalis Nanopartikel ZnO untuk Mendegradasi Zat Warna Methylene Blue. Chemistry Progress, 12(2), 54–58. DOI: 10.35799/cp.12.2.2019.27923
  3. Komarawidjaja, W. (2016). Sebaran Limbah Cair Industri Tekstil dan Dampaknya di Beberapa Desa Kecamatan Rancaekek Kabupaten Bandung Outspread of Textile Industry Waste Water and its Impact to a Number of Villages in Rancaekek District, Bandung Regency. Jurnal Teknologi Lingkungan, 17(2), 118–125. DOI: 10.29122/jtl.v17i2.1045
  4. Al-Tohamy, R., Ali, S.S., Li, F., Okasha, K.M., Mahmoud, Y.A.G., Elsamahy, T., Jiao, H., Fu, Y., Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. DOI: 10.1016/j.ecoenv.2021.113160
  5. Briffa, J., Sinagra, E., Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. DOI: 10.1016/j.heliyon.2020.e04691
  6. Adjid, G.A.F.A., Kurniawan, A., Nazriati, N. (2022). Textile Industry Waste Pollution in the Konto River: A Comparison of Public Perceptions and Water Quality Data. The Journal of Experimental Life Sciences, 12(3), 105–116. DOI: 10.21776/ub.jels.2022.012.03.05
  7. Rosanti, A.D., Kusumawati, Y., Hidayat, F., Fadlan, A., Wardani, A.R.., Anggraeni, H.A. (2022). Adsorption of Methylene Blue and Methyl Orange from Aqueous Solution using Orange Peel and CTAB-Modified Orange Peel. Journal Of the Turkish Chemical Society Chemistry, 9(1), 237–246. DOI: https://doi.org/10.18596/jotcsa.1003132
  8. Rosanti, A.D., Hidayat, F., Kusumawati, Y., Fadlan, A., Wardani, A.R.., Latifah, E.U. (2022). The effect of orange peel waste addition on ZnO characteristics and its ability to degrade methyl orange. In: IOP Conference Series: Earth and Environmental Science. pp. 1–8. DOI: 10.1088/1755-1315/1041/1/012008
  9. Mandar, S., Zainul, R. (2019). Sintesis dan Karakterisasi Nano ZnO doping Cu. Chemistry Journal, 8(1), 20–23. DOI: 10.24036/p.v8i1.104122
  10. Nelson, Ngatijo, Nurjanah, S., Maghviroh, N.A., Bemis, R. (2019). Sintesis dan karakterisasi fotokatalis ZnO/karbon aktif dan aplikasinya pada degradasi rhodamin B. Chempublish Journal, 4(2), 101–113. DOI: 10.22437/chp.v4i2.7936
  11. Adeel, M., Saeed, M., Khan, I., Muneer, M., Akram, N. (2021). Synthesis and Characterization of Co-ZnO and Evaluation of Its Photocatalytic Activity for Photodegradation of Methyl Orange. ACS Omega, 6(2), 1426–1435. DOI: 10.1021/acsomega.0c05092
  12. Chen, C., Liu, J., Liu, P., Yu, B. (2011). Investigation of Photocatalytic Degradation of Methyl Orange by Using Nano-Sized ZnO Catalysts. Advances in Chemical Engineering and Science, 01(01), 9–14. DOI: 10.4236/aces.2011.11002
  13. Kumar, R., Kumar, G., Umar, A. (2013). ZnO nano-mushrooms for photocatalytic degradation of methyl orange. Materials Letters, 97, 100–103. DOI: 10.1016/j.matlet.2013.01.044
  14. Zhou, J., Zhang, Z., Kong, X., He, F., Zhao, R., Wu, R., Wei, T., Wang, L., Feng, J. (2020). A novel P-N heterojunction with staggered energy level based on ZnFe2O4 decorating SnS2 nanosheet for efficient photocatalytic degradation. Applied Surface Science, 510, 145442. DOI: 10.1016/j.apsusc.2020.145442
  15. Khan, F., Ansari, S.A., Ahmad, A. (2017). Study of Photocatalytic activity of ZnO and TiO2 nanoparticles. International Journal of Engineering and Applied Sciences, 4(11), 130–136
  16. Mirzaeifard, Z., Shariatinia, Z., Jourshabani, M., Rezaei Darvishi, S.M. (2020). ZnO Photocatalyst Revisited: Effective Photocatalytic Degradation of Emerging Contaminants Using S-Doped ZnO Nanoparticles under Visible Light Radiation. Industrial and Engineering Chemistry Research, 59(36), 15894–15911. DOI: 10.1021/acs.iecr.0c03192
  17. Basit, R.A., Abbasi, Z., Hafeez, M., Ahmad, P., Khan, J., Khandaker, M.U., Al-Mugren, K.S., Khalid, A. (2023). Successive Photocatalytic Degradation of Methylene Blue by ZnO, CuO and ZnO/CuO Synthesized from Coriandrum sativum Plant Extract via Green Synthesis Technique. Crystals, 13(2) DOI: 10.3390/cryst13020281
  18. Majumder, S., Chatterjee, S., Basnet, P., Mukherjee, J. (2020). ZnO based nanomaterials for photocatalytic degradation of aqueous pharmaceutical waste solutions – A contemporary review. Environmental Nanotechnology, Monitoring and Management, 14, 100386. DOI: 10.1016/j.enmm.2020.100386
  19. Zhong, J.B., Li, J.Z., Xiao, Z.H., Hu, W., Zhou, X.B., Zheng, X.W. (2013). Improved photocatalytic performance of ZnO prepared by sol-gel method with the assistance of CTAB. Materials Letters, 91, 301–303. DOI: 10.1016/j.matlet.2012.10.040
  20. Mornani, E.G., Mosayebian, P., Dorranian, D., Behzad, K. (2016). Effect of calcination temperature on the size and optical properties of synthesized ZnO nanoparticles. Journal of Ovonic Research, 12(2), 75–80
  21. Golsheikh, A.M., Kamali, K.Z., Huang, N.M., Zak, A.K. (2018). Effect of calcination temperature on performance of ZnO nanoparticles for dye-sensitized solar cells. Powder Technology, 329, 282–287. DOI: 10.1016/j.powtec.2017.11.065
  22. Gupta, M.K., Tandon, P.K., Shukla, N., Singh, H., Srivastava, S. (2020). Efficient removal of methyl orange and rhodamine-B dyes with low cost banana peel activated carbon. Asian Journal of Chemistry, 32(5), 1121–1127. DOI: 10.14233/ajchem.2020.22580
  23. Krishnakumar, V., Elansezhian, R. (2021). Dispersion stability of zinc oxide nanoparticles in an electroless bath with various surfactants. Materials Today: Proceedings, 51, 369–373. DOI: 10.1016/j.matpr.2021.05.467
  24. Xu, X.L., Chen, Y., Ma, S.Y., Yan, S.H., Mao, Y.Z., Wang, T., Bian, H.Q. (2015). CTAB-assisted synthesis of unique 3D ZnO and the acetone sensing performances. Materials Letters, 151, 5–8. DOI: 10.1016/j.matlet.2015.03.017
  25. Elfeky, S.A., Mahmoud, S.E., Youssef, A.F. (2017). Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. Journal of Advanced Research, 8(4), 435–443. DOI: 10.1016/j.jare.2017.06.002
  26. Abdi, M.M., Tahir, P.M., Liyana, R., Javahershenas, R. (2018). A surfactant directed microcrystalline cellulose/polyaniline composite with enhanced electrochemical properties. Molecules, 23(10) DOI: 10.3390/molecules23102470
  27. Bukit, B.F., Frida, E., Humaidi, S., Sinuhaji, P. (2022). Preparation and characterization of CTAB surfactant modified TiO2 nanoparticles as antibacterial fabric coating material. Journal of Physics: Conference Series, 2165(1) DOI: 10.1088/1742-6596/2165/1/012022
  28. Hanafi, M.F., Sapawe, N. (2019). Effect of Calcination Temperature on the Structure and Catalytic Performance of ZrO2 Catalyst in Phenol Degradation. Materials Today: Proceedings, 19(10), 1533–1536. DOI: 10.1016/j.matpr.2019.11.179
  29. Purbaningtias, T.E., Kurniawati, P., Wiyantoko, B., Prasetyoko, D., Suprapto, S. (2017). Pengaruh Waktu Aging Pada Modifikasi Pori Zeolit Alam Dengan Ctabr. JST (Jurnal Sains dan Teknologi), 6(2), 321. DOI: 10.23887/jst-undiksha.v6i2.9322
  30. Lan, K., Zhao, D. (2022). Functional Ordered Mesoporous Materials: Present and Future. Nano Letters, 22(8), 3177–3179. DOI: 10.1021/acs.nanolett.2c00902
  31. Ariga, K., Vinu, A., Yamauchi, Y., Ji, Q., Hill, J.P. (2012). Nanoarchitectonics for mesoporous materials. Bulletin of the Chemical Society of Japan, 85(1), 1–32. DOI: 10.1246/bcsj.20110162
  32. Manga, J., Widiyanti, S.E. (2020). Studi Proses Hidrotermal pada Sintesis Material Mesopori dan Karakteristik Stabilitas Adsorpsi. In: Prosiding 4th Seminar Nasional Penelitian & Pengabdian Kepada Masyarakat 2020. pp. 98–102
  33. Wang, Y.D., Zhang, S., Ma, C.L., Li, H.D. (2007). Synthesis and room temperature photoluminescence of ZnO/CTAB ordered layered nanocomposite with flake-like architecture. Journal of Luminescence, 126(2), 661–664. DOI: 10.1016/j.jlumin.2006.10.018
  34. Ai, F., Zhao, G., Lv, W., Lin, J. (2020). Facile synthesis of cetyltrimethylammonium bromide-loaded mesoporous silica nanoparticles for efficient inhibition of hepatocellular carcinoma cell proliferation. Materials Research Express, 7(8), 085008. DOI: 10.1088/2053-1591/abad15
  35. Campbell, R.A., Parker, S.R.W., Day, J.P.R., Bain, C.D. (2004). External reflection FTIR spectroscopy of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) on an overflowing cylinder. Langmuir, 20(20), 8740–8753. DOI: 10.1021/la048680x
  36. Duarte, J., Cruz-Lopes, L., Dulyanska, Y., Domingos, I., Ferreira, J., de Lemos, L.T., Esteves, B. (2017). Orange peel liquefaction monitored by FTIR. Journal of International Scientific Publications: Agriculture & Food, 5, 309–313
  37. Feng, N., Guo, X., Liang, S. (2009). Adsorption study of copper (II) by chemically modified orange peel. Journal of Hazardous Materials, 164(2–3), 1286–1292. DOI: 10.1016/j.jhazmat.2008.09.096
  38. Bassim, S., Mageed, A.K., AbdulRazak, A.A., Al-Sheikh, F. (2023). Photodegradation of Methylene Blue with Aid of Green Synthesis of CuO/TiO2 Nanoparticles from Extract of Citrus Aurantium Juice. Bulletin of Chemical Reaction Engineering & Catalysis, 18(1), 1–16. DOI: 10.9767/bcrec.16417
  39. Sangeetha, A., Jaya Seeli, S., Bhuvana, K.P., Kader, M.A., Nayak, S.K. (2019). Correlation between calcination temperature and optical parameter of zinc oxide (ZnO) nanoparticles. Journal of Sol-Gel Science and Technology, 91(2), 261–272. DOI: 10.1007/s10971-019-05000-8
  40. Wang, Y., Li, Y., Zhou, Z., Zu, X., Deng, Y. (2011). Evolution of the zinc compound nanostructures in zinc acetate single-source solution. Journal of Nanoparticle Research, 13(10), 5193–5202. DOI: 10.1007/s11051-011-0504-y
  41. Laetsch, T., Downs, R.. (2006). Software for identification and refinement of cell parameters from powder diffraction data of minerals using the RUFF Project and American mineralogist crystal structure databases. Abstracts from the 19th General Meeting of the International Mineralogical Association. 23-28
  42. Kowalik, P., Konkol, M., Antoniak-Jurak, K., Próchniak, W., Wiercioch, P., Rawski, M., Borowiecki, T. (2015). Structure and morphology transformation of ZnO by carbonation and thermal treatment. Materials Research Bulletin, 65, 149–156. DOI: 10.1016/j.materresbull.2015.01.032
  43. Cullity, B.D. (1994). Elements of diffractionquasi-optics. Second Edition. London. Addison-Wesley Publishing Company Inc
  44. Aziz, S.B., Marf, A.S., Dannoun, E.M.A., Brza, M.A., Abdullah, R. (2020). The Study of the Degree of Crystallinity, Electrical Equivalent Circuit, and Dielectric Properties of Polyvinyl Alcohol (PVA)-Based Biopolymer Electrolytes Shujahadeen. Polymers, 12(10), 2184. DOI: 10.3390/polym12102184
  45. Momma, K., Izumi, F. (2008). VESTA: A three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41(3), 653–658. DOI: 10.1107/S0021889808012016
  46. Saleem, M., Fang, L., Ruan, H., Wu, F., Huang, Q., Xu, C., Kong, C. (2012). Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method. International Journal of the Physical Sciences, 7(23), 2971–2979. DOI: 10.5897/ijps12.219
  47. Kibasomba, P.M., Dhlamini, S., Maaza, M., Liu, C.P., Rashad, M.M., Rayan, D.A., Mwakikunga, B.W. (2018). Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method. Results in Physics, 9, 628–635. DOI: 10.1016/j.rinp.2018.03.008
  48. Mir, F.A. (2014). Transparent wide band gap crystals follow indirect allowed transition and bipolaron hopping mechanism. Results in Physics, 4, 103–104. DOI: 10.1016/j.rinp.2014.06.001

Last update:

No citation recorded.

Last update:

No citation recorded.