skip to main content

High Acidity and Low Carbon-Coke Formation Affinity of Co-Ni/ZSM-5 Catalyst for Renewable Liquid Fuels Production through Simultaneous Cracking-Deoxygenation of Palm Oil

1Laboratory of Plasma-Catalysis (R3.5), Center of Research and Services - Diponegoro University (CORES-DU), Universitas Diponegoro, Semarang, Central Java 50275, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Central Java 50275, Indonesia

Received: 12 Apr 2023; Revised: 18 May 2023; Accepted: 18 May 2023; Available online: 20 May 2023; Published: 30 Jul 2023.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract
This study investigates the effect of chemically doped Co and Ni metals on ZSM-5 catalyst with respect to the catalysts’ characteristics and performance for palm oil cracking. Some characterization methods have been conducted to identify the physicochemical properties of the synthesized catalysts, including X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), N2-physisorption, NH3- and CO2-probed Temperature Programmed Desorption (NH3-TPD and CO2-TPD) methods. The deposited carbon-coke on the spent catalysts is analysed using simultaneous thermal gravimetric – differential scanning calorimetry (TG-DTG-DSC) analysis. The performance of catalysts was evaluated on palm oil cracking process in a continuous fixed-bed catalytic reactor at 450 °C. To determine the liquid product composition functional group and components, we used Attenuated Total Reflectance Fourier-transform Infrared Spectroscopy (ATR-FTIR) and batch distillation methods, respectively. We found that the Co metal chemically-doped on Ni/SM-5 catalyst, resulting the increase in the catalysts acidity and the decrease in catalysts basicity. The conversion of palm oil increases as the increase of the ratio of catalysts’ acidity to basicity. The highest triglyceride conversion (76.5%) was obtained on the 3Co-Ni/ZSM-5 with the yield of gasoline, kerosene, and diesel of 2.61%, 4.38%, and 61.75%, respectively. It was also found that the chemically doping Co metal on Ni/ZSM-5 catalyst decreased carbon-coke formation due to the low catalysts’ basicity. Overall, it is proven that the combination of Co and Ni, which chemically doped, on ZSM-5 catalyst has a good activity in palm oil conversion with low carbon-coke formation affinity and high acidity of catalyst.
Keywords: Palm oil; Biofuels; Carbon-Coke formation; Cracking; Deoxygenation; Acidity; Basicity; Chemically doped
Funding: Universitas Diponegoro under contract Riset Publikasi Internasional (RPI) No 569-132/UN7.D2/PP/VII/2022

Article Metrics:

  1. Baharudin, K.B., Abdullah, N., Taufiq-Yap, Y.H., Derawi, D. (2020). Renewable diesel via solventless and hydrogen-free catalytic deoxygenation of palm fatty acid distillate. Journal of Cleaner Production, 274, 122850. DOI: 10.1016/j.jclepro.2020.122850
  2. Knothe, G. (2010). Biodiesel: Current Trends and Properties. Topics in Catalysis, 53(11–12), 714–720. DOI: 10.1007/s11244-010-9457-0
  3. Adira Wan Khalit, W.N., Marliza, T.S., Asikin-Mijan, N., Gamal, M.S., Saiman, M.I., Ibrahim, M.L., Taufiq-Yap, Y.H. (2020). Development of bimetallic nickel-based catalysts supported on activated carbon for green fuel production. RSC Advances, 10(61), 37218–37232. DOI: 10.1039/D0RA06302A
  4. Asikin-Mijan, N., Lee, H.V., Taufiq-Yap, Y.H., Juan, J.C., Rahman, N.A. (2016). Pyrolytic–deoxygenation of triglyceride via natural waste shell derived Ca(OH)2 nanocatalyst. Journal of Analytical and Applied Pyrolysis, 117, 46–55. DOI: 10.1016/j.jaap.2015.12.017
  5. Gamal, M.S., Asikin-Mijan, N., Khalit, W.N.A.W., Arumugam, M., Izham, S.M., Taufiq-Yap, Y.H. (2020). Effective catalytic deoxygenation of palm fatty acid distillate for green diesel production under hydrogen-free atmosphere over bimetallic catalyst CoMo supported on activated carbon. Fuel Processing Technology, 208, 106519. DOI: 10.1016/j.fuproc.2020.106519
  6. Riyanto, T., Istadi, I., Buchori, L., Anggoro, D.D., Dani Nandiyanto, A.B. (2020). Plasma-Assisted Catalytic Cracking as an Advanced Process for Vegetable Oils Conversion to Biofuels: A Mini Review. Industrial & Engineering Chemistry Research, 59(40), 17632–17652. DOI: 10.1021/acs.iecr.0c03253
  7. Buzetzki, E., Sidorová, K., Cvengrošová, Z., Kaszonyi, A., Cvengroš, J. (2011). The influence of zeolite catalysts on the products of rapeseed oil cracking. Fuel Processing Technology, 92(8), 1623–1631. DOI: 10.1016/j.fuproc.2011.04.009
  8. Ishihara, A., Tsukamoto, T., Hashimoto, T., Nasu, H. (2018). Catalytic cracking of soybean oil by ZSM-5 zeolite-containing silica-aluminas with three layered micro-meso-meso-structure. Catalysis Today, 303, 123–129. DOI: 10.1016/j.cattod.2017.09.033
  9. Gurdeep Singh, H.K., Yusup, S., Quitain, A.T., Abdullah, B., Ameen, M., Sasaki, M., Kida, T., Cheah, K.W. (2020). Biogasoline production from linoleic acid via catalytic cracking over nickel and copper-doped ZSM-5 catalysts. Environmental Research, 186, 109616. DOI: 10.1016/j.envres.2020.109616
  10. Istadi, I., Riyanto, T., Buchori, L., Anggoro, D.D., Gilbert, G., Meiranti, K.A., Khofiyanida, E. (2020). Enhancing Brønsted and Lewis Acid Sites of the Utilized Spent RFCC Catalyst Waste for the Continuous Cracking Process of Palm Oil to Biofuels. Industrial & Engineering Chemistry Research, 59(20), 9459–9468. DOI: 10.1021/acs.iecr.0c01061
  11. Istadi, I., Riyanto, T., Buchori, L., Anggoro, D.D., Pakpahan, A.W.S., Pakpahan, A.J. (2021). Biofuels Production from Catalytic Cracking of Palm Oil Using Modified HY Zeolite Catalysts over A Continuous Fixed Bed Catalytic Reactor. International Journal of Renewable Energy Development, 10(1), 149–156. DOI: 10.14710/ijred.2021.33281
  12. Riyanto, T., Istadi, I., Jongsomjit, B., Anggoro, D.D., Pratama, A.A., Faris, M.A. Al (2021). Improved Brønsted to Lewis (B/L) Ratio of Co- and Mo-Impregnated ZSM-5 Catalysts for Palm Oil Conversion to Hydrocarbon-Rich Biofuels. Catalysts, 11(11), 1286. DOI: 10.3390/catal11111286
  13. Botas, J.A., Serrano, D.P., García, A., de Vicente, J., Ramos, R. (2012). Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni- and Mo-modified nanocrystalline ZSM-5 zeolite. Catalysis Today, 195(1), 59–70. DOI: 10.1016/j.cattod.2012.04.061
  14. Haji Morni, N.A., Yeung, C.M., Tian, H., Yang, Y., Phusunti, N., Abu Bakar, M.S., Azad, A.K. (2021). Catalytic fast Co-Pyrolysis of sewage sludge−sawdust using mixed metal oxides modified with ZSM-5 catalysts on dual-catalysts for product upgrading. Journal of the Energy Institute, 94, 387–397. DOI: 10.1016/j.joei.2020.10.005
  15. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. DOI: 10.1515/pac-2014-1117
  16. Pietrowski, M., Zieliński, M., Alwin, E., Gulaczyk, I., Przekop, R.E., Wojciechowska, M. (2019). Cobalt-doped magnesium fluoride as a support for platinum catalysts: The correlation of surface acidity with hydrogenation activity. Journal of Catalysis, 378, 298–311. DOI: 10.1016/j.jcat.2019.09.001
  17. Musa, M.L., Mat, R., Abdullah, T.A.T. (2018). Catalytic Conversion of Residual Palm Oil in Spent Bleaching Earth (SBE) by HZSM-5 Zeolite based-Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 13(3), 456–465. DOI: 10.9767/bcrec.13.3.1929.456-465
  18. Anggoro, D.D., Hidayati, N., Buchori, L., Mundriyastutik, Y. (2016). Effect of Co and Mo Loading by Impregnation and Ion Exchange Methods on Morphological Properties of Zeolite Y Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11(1), 75–83. DOI: 10.9767/bcrec.11.1.418.75-83
  19. Subramanian, V., Zholobenko, V.L., Cheng, K., Lancelot, C., Heyte, S., Thuriot, J., Paul, S., Ordomsky, V. V., Khodakov, A.Y. (2016). The Role of Steric Effects and Acidity in the Direct Synthesis of iso -Paraffins from Syngas on Cobalt Zeolite Catalysts. ChemCatChem, 8(2), 380–389. DOI: 10.1002/cctc.201500777
  20. Khan, N.A., Kennedy, E.M., Dlugogorski, B.Z., Adesina, A.A., Stockenhuber, M. (2017). Cobalt Species Active for Nitrous Oxide (N2O) Decomposition within a Temperature Range of 300–600°C. Australian Journal of Chemistry, 70(10), 1138. DOI: 10.1071/CH17172
  21. Zheng, Y., Guo, Y., Wang, J., Luo, L., Zhu, T. (2021). Ca Doping Effect on the Competition of NH3–SCR and NH3 Oxidation Reactions over Vanadium-Based Catalysts. The Journal of Physical Chemistry C, 125(11), 6128–6136. DOI: 10.1021/acs.jpcc.1c00677
  22. Putluru, S.S.R., Jensen, A.D., Riisager, A., Fehrmann, R. (2011). Alkali Resistant Fe-Zeolite Catalysts for SCR of NO with NH3 in Flue Gases. Topics in Catalysis, 54(16–18), 1286–1292. DOI: 10.1007/s11244-011-9750-6
  23. Sadek, R., Chalupka, K.A., Mierczynski, P., Rynkowski, J., Gurgul, J., Dzwigaj, S. (2019). Cobalt Based Catalysts Supported on Two Kinds of Beta Zeolite for Application in Fischer-Tropsch Synthesis. Catalysts, 9(6), 497. DOI: 10.3390/catal9060497
  24. Tišler, Z., Klegová, A., Svobodová, E., Šafář, J., Strejcová, K., Kohout, J., Šlang, S., Pacultová, K., Rodríguez-Padrón, D., Bulánek, R. (2020). Cobalt Based Catalysts on Alkali-Activated Zeolite Foams for N2O Decomposition. Catalysts, 10(12), 1398. DOI: 10.3390/catal10121398
  25. Ezeh, C.I., Yang, X., He, J., Snape, C., Cheng, X.M. (2018). Correlating ultrasonic impulse and addition of ZnO promoter with CO2 conversion and methanol selectivity of CuO/ZrO2 catalysts. Ultrasonics Sonochemistry, 42, 48–56. DOI: 10.1016/j.ultsonch.2017.11.013
  26. Busca, G. (2017). Acidity and basicity of zeolites: A fundamental approach. Microporous and Mesoporous Materials, 254, 3–16. DOI: 10.1016/j.micromeso.2017.04.007
  27. Mignon, P., Geerlings, P., Schoonheydt, R. (2006). Understanding the Concept of Basicity in Zeolites. A DFT Study of the Methylation of Al−O−Si Bridging Oxygen Atoms. The Journal of Physical Chemistry B, 110(49), 24947–24954. DOI: 10.1021/jp064762d
  28. Wei, L., Grénman, H., Haije, W., Kumar, N., Aho, A., Eränen, K., Wei, L., de Jong, W. (2021). Sub-nanometer ceria-promoted Ni 13X zeolite catalyst for CO2 methanation. Applied Catalysis A: General, 612, 118012. DOI: 10.1016/j.apcata.2021.118012
  29. Efremova, A., Szenti, I., Kiss, J., Szamosvölgyi, Á., Sápi, A., Baán, K., Olivi, L., Varga, G., Fogarassy, Z., Pécz, B., Kukovecz, Á., Kónya, Z. (2022). Nature of the Pt-Cobalt-Oxide surface interaction and its role in the CO2 Methanation. Applied Surface Science, 571, 151326. DOI: 10.1016/j.apsusc.2021.151326
  30. Fiorenza, R., Bellardita, M., Balsamo, S.A., Spitaleri, L., Gulino, A., Condorelli, M., D’Urso, L., Scirè, S., Palmisano, L. (2022). A solar photothermocatalytic approach for the CO2 conversion: Investigation of different synergisms on CoO-CuO/brookite TiO2-CeO2 catalysts. Chemical Engineering Journal, 428, 131249. DOI: 10.1016/j.cej.2021.131249
  31. Coates, J. (2006). Interpretation of Infrared Spectra, A Practical Approach. In: Encyclopedia of Analytical Chemistry. Chichester, UK: John Wiley & Sons, LtdDOI: 10.1002/9780470027318.a5606