skip to main content

Enzymatic Interesterification of Crude Palm Oil with Methyl acetate: Effect of Pre-treatment, Enzyme’s Dosage and Stability

1School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia

2Biocatalysis & Biobased Material Tech (BBMT), Research Initiative Group (RIG), College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia

3Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia

4 Chemical Engineering Department, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Central Java, Indonesia

View all affiliations
Received: 26 Mar 2023; Revised: 10 Jul 2023; Accepted: 12 Jul 2023; Available online: 18 Jul 2023; Published: 20 Aug 2023.
Editor(s): Dmitry Yu. Murzin
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In the present study, biodiesel was produced via the enzymatic interesterification of Crude Palm Oil (CPO) and methyl acetate within ultrasonic condition. In contrast to alcohol, methyl acetate as an acyl acceptor does not inhibit lipase activity and can create triacetin as a useful byproduct.  In this work, Immobilized lipase from Candida Antartica A (CaLA) was utilized as biocatalyst and the effect of using non-pretreated CPO and pre-treated CPO as feedstock were explored. The pre-treatment of CPO involves degumming with acid, washing with water, and bleaching. The enzymatic interesterification was conducted in three-neck flasks using an ultrasonic water bath at 45o C.  Few parameter effects on biodiesel production were also investigated, including the effect of molar ratio of CPO to methyl acetate, the effect amount of lipase, and the reusability of immobilized lipase (CaLA) in the interesterification reaction.  The highest average Biodiesel yield of 80.6% was obtained from pretreated CPO at a molar ratio of 1:9 with 100 mg (1% w/v) of Immobilized CaLA, after three hours of reaction. Further research on the reusability of immobilized CaLA revealed that the yield of biodiesel reduced significantly after the second run. The results of the present study also demonstrated that Immobilized CaLA performed well at low concentrations but had low stability, with productivity decreasing to 92% upon reuse after the initial run. In order to make Immobilized lipase economically viable, further research must be conducted to overcome its low stability in the reaction.

Keywords: Crude Palm Oil; Biodiesel; Candida Antartica Lipase A; enzyme

Article Metrics:

  1. Mekhilef, S., Siga, S., Saidur, R. (2011). A review on palm oil biodiesel as a source of renewable fuel. Renewable and Sustainable Energy Reviews, 15(4), 1937–1949. DOI: 10.1016/J.RSER.2010.12.012
  2. Woittiez, L.S., van Wijk, M.T., Slingerland, M., van Noordwijk, M., Giller, K.E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57–77. DOI: 10.1016/J.EJA.2016.11.002
  3. Ma, F., Hanna, M.A. (1999). Biodiesel production: A review. Bioresource Technology, 70(1), 1–15. DOI: 10.1016/S0960-8524(99)00025-5
  4. Lee, J.S., Saka, S. (2010). Biodiesel production by heterogeneous catalysts and supercritical technologies. Bioresource Technology, 101(19), 7191–7200. DOI: 10.1016/j.biortech.2010.04.071
  5. Miao, X., Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97(6), 841–846. DOI: 10.1016/j.biortech.2005.04.008
  6. Helwani, Z., Othman, M.R., Aziz, N., Fernando, W.J.N., Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques : A review. Fuel Processing Technology, 90(12), 1502–1514. DOI: 10.1016/j.fuproc.2009.07.016
  7. Anastopoulos, G., Zannikou, Y., Stournas, S., Kalligeros, S. (2009). Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters. Energies, 2(2), 362–376. DOI: 10.3390/en20200362
  8. Chen, J.-W., Wu, W.-T. (2003). Regeneration of immobilized Candida antarctica lipase for transesterification. Journal of Bioscience and Bioengineering, 95(5), 466–469. DOI: 10.1263/jbb.95.466
  9. Maceiras, R., Vega, M., Costa, C., Ramos, P., Márquez, M.C. (2011). Enzyme deactivation during biodiesel production. Chemical Engineering Journal, 166(1), 358–361. DOI: 10.1016/J.CEJ.2010.11.007
  10. Salis, A., Pinna, M., Monduzzi, M., Solinas, V. (2005). Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology, 119(3), 291–299. DOI: 10.1016/j.jbiotec.2005.04.009
  11. Dossat, V., Combes, D., Marty, A. (1999). Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: Influence of the glycerol production. Enzyme and Microbial Technology, 25(3–5), 194–200. DOI: 10.1016/S0141-0229(99)00026-5
  12. Casas, A., Ramos, M.J., Pérez, Á. (2011). Kinetics of chemical interesterification of sunflower oil with methyl acetate for biodiesel and triacetin production. Chemical Engineering Journal, 171(3), 1324–1332. DOI: 10.1016/j.cej.2011.05.037
  13. Ognjanovic, N., Bezbradica, D., Knezevic-Jugovic, Z. (2009). Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: Process optimization and the immobilized system stability. Bioresource Technoloy, 100(21), 5146–5154. DOI: 10.1016/j.biortech.2009.05.068
  14. Casas, A., Ruiz, J.R., Ramos, M.J., Pérez, A. (2010). Effects of Triacetin on Biodiesel Quality. Energy & Fuels, 24(8), 4481–4489. DOI: 10.1021/ef100406b
  15. Lacerda, C.V., Carvalho, M.J.S., Ratton, A.R., Soares, I.P., Borges, L.E.P. (2015). Synthesis of Triacetin and Evaluation on Motor. Journal of the Brazilian Chemical Society, 26(8), 1625–1631. DOI: 10.5935/0103-5053.20150133
  16. Sheldon, R.A., Wallau, M., Arends, I.W.C.E., Schuchardt, U. (1998). Heterogeneous Catalysts for Liquid-Phase Oxidations: Philosophers’ Stones or Trojan Horses?. Accounts of Chemical Research, 31(8), 485–493. DOI: 10.1021/ar9700163
  17. Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 35(2–3), 126–139. DOI: 10.1016/J.ENZMICTEC.2003.12.013
  18. Yeoman, C.J., Han, Y., Dodd, D., Schroeder, C.M., Mackie, R.I., Cann, I.K.O. (2010). Thermostable Enzymes as Biocatalysts in the Biofuel Industry. Advances in Applied Microbiology, 70, 1–55. DOI: 10.1016/S0065-2164(10)70001-0
  19. Jegannathan, K.R., Abang, S., Poncelet, D., Chan, E.S., Ravindra, P. (2008). Production of biodiesel using immobilized lipase - A critical review. Critical Reviews in Biotechnology, 28(4), 253–264. DOI: 10.1080/07388550802428392
  20. Bernal, C., Illanes, A., Wilson, L. (2014). Heterofunctional hydrophilic-hydrophobic porous silica as support for multipoint covalent immobilization of lipases: Application to lactulose palmitate synthesis. Langmuir, 30(12), 3557–3566. DOI: 10.1021/la4047512
  21. Mohamad, N.R., Marzuki, N.H.C., Buang, N.A., Huyop, F., Wahab, R.A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29, 205–220. DOI: 10.1080/13102818.2015.1008192
  22. Shamel, M.M., Ramachandran, K.B., Hasan, M. (2005). Operational Stability of Lipase Enzyme: Effect of Temperature and Shear. Developments in Chemical Engineering and Mineral Processing, 13(5–6), 599–604. DOI: 10.1002/APJ.5500130509
  23. Sharma, S., Kanwar, S.S. (2014). Organic solvent tolerant lipases and applications. The Scientific World Journal, 2014, 625258. DOI: 10.1155/2014/625258
  24. Royon, D., Daz, M., Ellenrieder, G., Locatelli, S. (2007). Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology, 98(3), 648–653. DOI: 10.1016/j.biortech.2006.02.021
  25. Bonrath, W. (2005). Ultrasound supported catalysis. Ultrasonics Sonochemistry, 12(1-2), 103-106. DOI: 10.1016/j.ultsonch.2004.03.008
  26. Zaks, A., Klibanov, M. (1988). Enzymatic Catalysis in Nonaqueous Solvents. Journal of Biological Chemistry, 263(7), 3194-3201. DOI: 10.1016/S0021-9258(18)69054-4
  27. Pokhrel, N., Vabbina, P.K., Pala, N. (2016). Sonochemistry: Science and Engineering. Ultrasonics Sonochemistry, 29, 104–128. DOI: 10.1016/j.ultsonch.2015.07.023
  28. Foumthuim, C.J.D., Carrer, M., Houvet, M., Škrbić, T., Graziano, G., Giacometti, A. (2020). Can the roles of polar and non-polar moieties be reversed in non-polar solvents? Physical Chemistry Chemical Physics, 22(44), 25848–25858. DOI: 10.1039/D0CP02948C
  29. Batistella, L., Lerin, L.A., Brugnerotto, P., Danielli, A.J., Trentin, C.M., Popiolski, A., Treichel, H., Oliveira, J.V., De Oliveira, D. (2012). Ultrasound-assisted lipase-catalyzed transesterification of soybean oil in organic solvent system. Ultrasonics Sonochemistry, 19(3), 452–458. DOI: 10.1016/j.ultsonch.2011.11.018
  30. Watanabe, Y., Shimada, Y., Sugihara, A., Tominaga, Y. (2002). Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. Journal of Molecular Catalysis - B Enzymatic, 17(3–5), 151–155. DOI: 10.1016/S1381-1177(02)00022-X
  31. Indira, D., Das, B., Bhawsar, H., Moumita, S., Johnson, E.M., Balasubramanian, P., Jayabalan, R. (2018). Investigation on the production of bioethanol from black tea waste biomass in the seawater-based system. Bioresource Technology Reports, 4, 209–213. DOI: 10.1016/j.biteb.2018.11.003
  32. Van Nieuwenhuyzen, W., Tomás, M.C. (2008). Update on vegetable lecithin and phospholipid technologies. European Journal of Lipid Science and Technology, 110(5), 472–486. DOI: 10.1002/EJLT.200800041
  33. Surendhiran, D., Sirajunnisa, A.R., Vijay, M. (2015). An alternative method for production of microalgal biodiesel using novel Bacillus lipase. 3 Biotech, 5(5), 715–725. DOI: 10.1007/s13205-014-0271-4
  34. Shimada, Y., Watanabe, Y., Samukawa, T., Sugihara, A., Noda, H., Fukuda, H., Tominaga, Y. (1999). Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. Journal of the American Oil Chemists’ Society, 76(7), 789–793. DOI: 10.1007/s11746-999-0067-6
  35. Yasvanthrajan, N., Sivakumar, P., Muthukumar, K., Murugesan, T., Arunagiri, A. (2021). Production of biodiesel from waste bio-oil through ultrasound assisted transesterification using immobilized lipase. Environmental Technology & Innovation, 21, 101199. DOI: 10.1016/J.ETI.2020.101199
  36. Zhao, X., Qi, F., Yuan, C., Du, W., Liu, D. (2015). Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renewable and Sustainable Energy Reviews, 44, 182–197. DOI: 10.1016/j.rser.2014.12.021
  37. Widyawati, M., Manurung, R., Afrianto, R. (2014). Synthesis Biodiesel from Palm Oil Through Interesterification Using Imobilized Lipase Enzym as Catalyst: The Effect of Amount of Biocatalyst, Mole Ratio of Reactant, Temperature to Yield. International Journal of Science and Engineering, 7(2), 174–177. DOI: 10.12777/ijse.7.2.174-177
  38. Gharat, N., Rathod, V.K. (2013). Ultrasound assisted enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. Ultrasonics Sonochemistry, 20(3), 900–905. DOI: 10.1016/j.ultsonch.2012.10.011
  39. Pollardo, A.A., Lee, H.-S., Lee, D., Kim, S., Kim, J. (2018). Solvent effect on the enzymatic production of biodiesel from waste animal fat. Journal of Cleaner Production, 185, 382–388. DOI: 10.1016/j.jclepro.2018.02.210
  40. Kamal, Z., Yedavalli, P., Deshmukh, M.V., Rao, N.M. (2013). Lipase in aqueous-polar organic solvents: Activity, structure, and stability. Protein Science, 22(7), 904–915. DOI: 10.1002/pro.2271
  41. Pastres, R., Panzeri, A.L., Visentin, D., Causin, V. (2022). Determination by infrared spectroscopy of triacetin content in diesel: A tool for countering designer fuel frauds. Talanta Open, 5, 100109. DOI: 10.1016/j.talo.2022.100109
  42. Subhedar, P.B., Gogate, P.R. (2016). Ultrasound assisted intensification of biodiesel production using enzymatic interesterification. Ultrasonics Sonochemistry, 29, 67–75. DOI: 10.1016/j.ultsonch.2015.09.006
  43. Lopresto, C.G., Naccarato, S., Albo, L., De Paola, M.G., Chakraborty, S., Curcio, S., Calabrò, V. (2015). Enzymatic transesterification of waste vegetable oil to produce biodiesel. Ecotoxicology and Environmental Safety, 121, 229–235. DOI: 10.1016/j.ecoenv.2015.03.028

Last update:

No citation recorded.

Last update:

No citation recorded.