skip to main content

Bismuth Oxychloride as an Efficient Heterogeneous Catalyst for Aldol Condensation Reaction between Aldehydes and Ketones

1Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298A-300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City, 700000, Vietnam

2Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam

Received: 14 Mar 2023; Revised: 26 Apr 2023; Accepted: 26 Apr 2023; Available online: 28 Apr 2023; Published: 30 Jul 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The aldol reaction is a cornerstone of modern synthetic organic chemistry in which the β-hydroxyketone was formed by the reaction of an enol or an enolate and a carbonyl compound. Benzalacetone is one of the fundamental building blocks of benzalacetone synthase structure that play an important role for construction of a variety of medicinally crucial phenylbutanoids, such as anti-inflammatory glucoside lindleyin in rhubarb and gingerol. The non-transition metal material attracted much attention from research groups on the world, such a potential catalyst as BiOCl for organic reaction due to its remarkably chemical and physical properties as relative stability, resistance of air and moisture, low toxicity. The BiOCl material was synthesized by the solvothermal method. The structure features of material were defined by modern analytic methods such as X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), Scaning Electron Microscope (SEM), and Nitrogen Adsorption-Desorption Isotherms. The BiOCl material was successfully utilized as a catalyst for the aldol condensation reaction of benzaldehyde and acetone. The reaction was performed in the mild condition with the presence of 10 mol% catalyst and 2 equivalent of Cs2CO3 as base without by-product in very short reaction times and good yields. The benzalacetone product obtained around 85% yield at 120 °C for 24 h. The BiOCl material after reaction was recovered and reused many times without significant reducing of catalytic activity. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Aldol condensation; benzalacetone; Bismuth Oxychloride; heterogeneous catalyst
Funding: Vietnam National Foundation for Science and Technology Development (NAFOSTED) under contract grant number 104.01-2019.16.

Article Metrics:

  1. Rayar, A., Veitía, M.S., Ferroud, C. (2015). An efficient and selective microwave-assisted Claisen-Schmidt reaction for the synthesis of functionalized benzalacetones. SpringerPlus, 4(221), 8–12. DOI: 10.1186/s40064-015-0985-8
  2. Handani, S., Sulistyo, A.I. (2008). Synthesis of Hydroxyl Radical Scavengers from Benzalacetone and its Derivatives. Journal of Physical Science, 19(2), 61–68
  3. Hu, J., Lu, Z., Yin, H., Xue, W., Wang, A., Shen, L., Liu, S. (2016). Aldol condensation of acetic acid with formaldehyde to acrylic acid over SiO2-, SBA-15-, and HZSM-5-supported V-P-O catalysts. Journal of Industrial and Engineering Chemistry, 40, 145–151. DOI: 10.1016/j.jiec.2016.06.018
  4. Wang, A., Hu, J., Yin, H., Lu, Z., Xue, W., Shen, L., Liu, S. (2017). Aldol condensation of acetic acid with formaldehyde to acrylic acid over Cs(Ce,Nd)VPO/SiO2 catalyst. RSC Advances, 7(76), 48475–48485. DOI: 10.1039/C7RA09778F
  5. Wang, A., Ye, C., Yu, D., Ding, Y., Yin, H. (2022). Synthesis of acrylic acid through aldol condensation of acetic acid with formaldehyde catalyzed by Bi‐, W‐ and Cs‐doped B2O3/SiO2 nanocomposites. Journal of Chemical Technology & Biotechnology, 97(7), 1665–1675. DOI: 10.1002/jctb.7032
  6. Shen, L., Yu, Z., Wang, A., Yin, H. (2019). Reaction between methanol and acetic acid catalyzed by SiO2‐supported V‐P‐O catalyst in oxygen atmosphere. The Canadian Journal of Chemical Engineering, 97(10), 2699–2707. DOI: 10.1002/cjce.23571
  7. Shen, L., Yu, Z., Yin, H., Wang, C., Wang, A., Shao, S. (2020). Acrylic acid synthesis via condensation of acetic acid and formaldehyde catalyzed by silica aerogel‐supported SiW/PW/PMo oxides. Journal of Chemical Technology & Biotechnology, 95(6), 1683–1693. DOI: 10.1002/jctb.6360
  8. Jayapal, M.R., Sreenivasa Prasad, K., Sreedhar, N.Y. (2010). Synthesis and characterization of 2,6-dihydroxy substituted chalcones using PEG-400 as a recyclable solvent. Journal of Pharmaceutical Sciences and Research, 2(8), 450–458
  9. Rahman, A.F.M.M., Ali, R., Jahng, Y., Kadi, A.A. (2012). A facile solvent free claisen-schmidt reaction: Synthesis of α,α’-bis-(Substituted-benzylidene)cycloalkanones and α,α’-bis-(Substituted-alkylidene) cycloalkanones. Molecules, 17(1), 571–583. DOI: 10.3390/molecules17010571
  10. Deng, G., Ren, T. (2003). Indium trichloride catalyzes aldol-condensations of aldehydes and ketones. Synthetic Communications, 33(17), 2995–3001. DOI: 10.1081/SCC-120022473
  11. Kumar, S.D., Sandhu, J.S. (2010). An efficient green protocol for the synthesis of chalcones by a Claisen-schmidt reaction using bismuth(III) chloride as a catalyst under solvent-free condition. Green Chemistry Letters and Reviews, 3(4), 283–286. DOI: 10.1080/17518251003776893
  12. Iranpoor, N., Zeynizadeh, B., Aghapour, A. (1999). Aldol condensation of cycloalkanones with aromatic aldehydes catalysed with TiCi3(SO3CF3). Journal of Chemical Research-Part S, 3(9), 554–555. DOI: 10.1039/A809827A
  13. Wang, L., Sheng, J., Tian, H., Han, J., Fan, Z., Qian, C. (2004). A convenient synthesis of α,α′-bis(substituted benzylidene)cycloalkanones catalyzed by Yb(OTf)3 under solvent-free conditions. Synthesis, (18), 3060–3064. DOI: 10.1080/15533174.2011.613882
  14. Zhang, X., Fan, X., Niu, H., Wang, J. (2003). An ionic liquid as a recyclable medium for the green preparation of α,α′-bis (substituted benzylidene)cycloalkanones catalyzed by FeCl3·6H2O. Green Chemistry, 5(2), 267–269. DOI: 10.1039/B212155G
  15. Bothwell, J.M., Krabbe, S.W., Mohan, R.S. (2011). Applications of bismuth(iii) compounds in organic synthesis. Chemical Society Reviews, 40(9), 4649–4707. DOI: 10.1039/C0CS00206B
  16. Hua, R. (2008). Recent Advances in Bismuth-Catalyzed Organic Synthesis. Current Organic Synthesis, 5(1), 1–27. DOI: 10.2174/157017908783497518
  17. Attanasi, O.A., Favi, G., Giorgi, G., Mantellini, F., Karapetyan, V., Langer, P. (2009). Regioselective synthesis of spiro-cyclopropanated 1-aminopyrrol-2-ones by Bi(OTf)3-catalyzed one-pot “Mukaiyama-Michael addition/cyclization/ring-contraction” reactions of 1,2-bis(trimethylsilyloxy)cyclobutene with 1,2-diaza-1,3-butadienes. Tetrahedron, 65(28), 5456–5461. DOI: 1016/j.tet.2009.04.018
  18. Mathia, F., Szolcsányi, P. (2012). Bismuth(iii) triflate promoted intramolecular hydroamination of unactivated alkenyl sulfonamides in the preparation of pyrrolidines. Organic and Biomolecular Chemistry, 10(14), 2830–2839. DOI: 10.1039/C2OB07064B
  19. Rubenbauer, P., Herdtweck, E., Strassner, T., Bach, T. (2008). Bi(OTf)3-catalyzed diastereoselective SN1-type reactions of chiral propargylic acetates. Angewandte Chemie - International Edition, 47(52), 10106–10109. DOI: 10.1002/anie.200804025
  20. Cacciuttolo, B., Ondet, P., Poulain-Martini, S., Lemière, G., Duñach, E. (2014). Bi(OTf)3-catalysed synthesis of substituted indanes by a double hydroarylation of unactivated 1,3-dienes. Organic Chemistry Frontiers, 1(7), 765–769. DOI: 10.1039/C4QO00149D
  21. Ollevier, T. (2013). New trends in bismuth-catalyzed synthetic transformations. Organic & Biomolecular Chemistry, 11, 2740–2755. DOI: 10.1039/c3ob26537d
  22. Murai, M., Hosokawa, N., Roy, D., Takai, K. (2014). Bismuth-catalyzed synthesis of polycyclic aromatic hydrocarbons (PAHs) with a phenanthrene backbone via cyclization and aromatization of 2-(2-arylphenyl)vinyl ethers. Organic Letters, 16(16), 4134–4137. DOI: 10.1021/ol5018273
  23. Ondet, P., Joffrin, A., Diaf, I., Lemière, G., Duñach, E. (2015). Cycloisomerization of allene-enol ethers under Bi(OTf)3 catalysis. Organic Letters, 17(4), 1002–1005. DOI: 10.1021/acs.orglett.5b00110
  24. Jaratjaroonphong, J., Tuengpanya, S., Ruengsangtongkul, S. (2015). Bi(OTf)3-Catalyzed One-Step Catalytic Synthesis of N-Boc or N-Cbz Protected α-Branched Amines. Journal of Organic Chemistry, 80(1), 559–567. DOI: 10.1021/jo502540k
  25. Elizarov, N., Pucheault, M., Antoniotti, S. (2016). Highly Efficient Hosomi-Sakurai Reaction of Aromatic Aldehydes Catalyzed by Montmorillonite Doped with Simple Bismuth(III) Salts. Batch and Continuous Flow Studies. ChemistrySelect, 1(12), 3219–3222. DOI: 10.1002/slct.201600916
  26. Li, H., Qin, F., Yang, Z., Cui, X., Wang, J., Zhang, L. (2017). New Reaction Pathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOCl Possessing Oxygen Vacancies. Journal of the American Chemical Society, 139(9), 3513–3521. DOI: 10.1021/jacs.6b12850
  27. Mera, A.C., Rodríguez, C.A., Pizarro-Castillo, L., Meléndrez, M.F., Valdés, H. (2020). Effect of temperature and reaction time during solvothermal synthesis of BiOCl on microspheres formation: implications in the photocatalytic oxidation of gallic acid under simulated solar radiation. Journal of Sol-Gel Science and Technology, 95(1), 146–156. DOI: 10.1007/s10971-020-05312-0
  28. Li, B., Shao, L., Zhang, B., Wang, R., Zhu, M., Gu, X. (2017). Understanding size-dependent properties of BiOCl nanosheets and exploring more catalysis. Journal of Colloid and Interface Science, 505, 653–663. DOI: 10.1016/j.jcis.2017.06.060
  29. Bao, L., Yuan, Y.J. (2020). Highly dispersed BiOCl decahedra with a highly exposed (001) facet and exceptional photocatalytic performance. Dalton Transactions, 49(33), 11536–11542. DOI: 10.1039/d0dt02372h
  30. Sun, D., Li, J., Feng, Z., He, L., Zhao, B., Wang, T., Li, R., Yin, S., Sato, T. (2014). Solvothermal synthesis of BiOCl flower-like hierarchical structures with high photocatalytic activity. Catalysis Communications, 51(3), 1–4. DOI: 10.1016/j.catcom.2014.03.004
  31. Rashid, J., Karim, S., Kumar, R., Barakat, M.A., Akram, B., Hussain, N., Bin, H. Bin, Xu, M. (2020). A facile synthesis of bismuth oxychloride-graphene oxide composite for visible light photocatalysis of aqueous diclofenac sodium. Scientific Reports, 10(1), 1–11. DOI: 10.1038/s41598-020-71139-y
  32. Zhong, Y., Liu, Y., Wu, S., Zhu, Y., Chen, H., Yu, X., Zhang, Y. (2018). Facile fabrication of BiOI/BiOCl immobilized films with improved visible light photocatalytic performance. Frontiers in Chemistry, 6(MAR), 1–11. DOI: 10.3389/fchem.2018.00058
  33. Tröbs, L., Wilke, M., Szczerba, W., Reinholz, U., Emmerling, F. (2014). Mechanochemical synthesis and characterisation of two new bismuth metal organic frameworks. CrystEngComm, 16(25), 5560–5565. DOI: 10.1039/C3CE42633E
  34. Zhu, P., Ma, Y., Wang, Y., Yang, Y., Qian, G. (2020). Separation and recovery of materials from the waste light emitting diode (LED) modules by solvent method. Journal of Material Cycles and Waste Management, 22(4), 1184–1195. DOI: 10.1007/s10163-020-01012-7
  35. Nekhoroshev, V.P., Turov, Y.P., Nekhorosheva, A. V., Ogorodnikov, V.D., Gaevoi, K.N. (2006). Composition and structure of low-molecular-weight products of thermal oxidative degradation of atactic polypropylene. Russian Journal of Applied Chemistry, 79(5), 833–840. DOI: 10.1134/S1070427205030272
  36. Mohamed, M.A., Jaafar, J., Ismail, A.F., Othman, M.H.D., Rahman, M.A. (2017). Fourier Transform Infrared (FTIR) Spectroscopy. Elsevier B.V
  37. More, S.A., Halor, R.G., Shaikh, R., Bisen, G.G., Tarkas, H.S., Tak, S.R., Bade, B.R., Jadkar, S.R., Sali, J.V., Ghosh, S.S. (2020). Investigating the effect of solvent vapours on crystallinity, phase, and optical, morphological and structural properties of organolead halide perovskite films. RSC Advances, 10(66), 39995–40004. DOI: 10.1039/D0RA07926J
  38. Liu, L., Zhang, R., Liu, Y., Zhu, H., Tan, W., Zhu, G., Wang, Y. (2018). Effects of Solvent Molecules on the Interlayer Spacing of Graphene Oxide. Transactions of Tianjin University, 24(6), 555–562. DOI: 10.1007/s12209-018-0164-4
  39. Seddigi, Z.S., Gondal, M.A., Baig, U., Ahmed, S.A., Abdulaziz, M.A., Danish, E.Y., Khaled, M.M., Lais, A. (2017). Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants. PLoS ONE, 12(2), 1–19. DOI: 10.1371/journal.pone.0172218
  40. Li, L., Zhang, M., Zhao, Z., Sun, B., Zhang, X. (2016). Visible/near-IR-light-driven TNFePc/BiOCl organic-inorganic heterostructures with enhanced photocatalytic activity. Dalton Transactions, 45(23), 9497–9505. DOI: 10.1039/c6dt01091a
  41. Meng, X., Zhang, Z. (2018). New insight into BiOX (X = Cl, Br, and I) hierarchical microspheres in photocatalysis. Materials Letters, 225, 152–156. DOI: 10.1016/j.matlet.2018.04.086
  42. Wu, S., Wang, C., Cui, Y., Hao, W., Wang, T., Wu, S., Wang, C., Cui, Y., Hao, W., Wang, T. (2011). BiOCl nano / microstructures on substrates : Synthesis and photocatalytic properties. Materials Letters, 65, 1344–1347. DOI: 10.1016/j.matlet.2011.01.078
  43. Wu, Y. (2014). Photocatalytic Properties of Bi/BiOCl Heterojunctions Synthesized by In Situ Reduction Method. New Journal of Chemistry, 38, 4913–4921. DOI: 10.1039/C4NJ00794H
  44. Nishi, Y., Inagaki, M. (2016). Gas Adsorption/Desorption Isotherm for Pore Structure Characterization. Tsinghua University Press Limited
  45. Henderson, J. (1995). The analysis of ancient glasses part I: Materials, properties, and early European glass. JOM, 47(11), 62–64. DOI: 10.1007/BF03221315
  46. Jiang, J., Zhao, K., Xiao, X., Zhang, L. (2012). Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. Journal of the American Chemical Society, 134(10), 4473–4476. DOI: 10.1021/ja210484t
  47. Xiong, J., Cheng, G., Li, G., Qin, F., Chen, R. (2011). Well-crystallized square-like 2D BiOCl nanoplates: Mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Advances, 1(8), 1542–1553. DOI: 10.1039/c1ra00335f
  48. Sergeev, D., Yazhenskikh, E., Kobertz, D., Müller, M. (2019). Vaporization behavior of Na2CO3 and K2CO3. Calphad, 65, 42–49. DOI: 10.1016/j.calphad.2019.02.004
  49. Liu, X., Gan, J., Nirasawa, S., Tatsumi, E., Yin, L., Cheng, Y. (2018). Effects of sodium carbonate and potassium carbonate on colloidal properties and molecular characteristics of konjac glucomannan hydrogels. International Journal of Biological Macromolecules, 117, 863–869. DOI: 10.1016/j.ijbiomac.2018.05.176
  50. Prakoso, N.I., Nugroho, N.V., Rubiyanto, D. (2020). Comparative study of the effectiveness of Na2CO3 and K2CO3 as base in methylation reaction on eugenol using dimethylcarbonate. AIP Conference Proceedings, 2229, 030001. DOI: 10.1063/5.0002543
  51. Wakaki, T., Togo, T., Yoshidome, D., Kuninobu, Y., Kanai, M. (2018). Palladium-catalyzed synthesis of diaryl ketones from aldehydes and (hetero)aryl halides via C-H bond activation. ACS Catalysis, 8(4), 3123–3128. DOI: 10.1021/acscatal.8b00440
  52. Tobias Emanuel Schirmer, a Alexander Wimmer, a F.W.C.W. a and, König, B. (2019). Photo-Nickel Dual Catalytic Benzoylation of Aryl Bromides. Chemical Communications, 55(72), 10796–10799. DOI: 10.1039/C9CC04726C
  53. Berardi, M.D., Gentile, F., Kozik, I., Gregg, T.M. (2021). Aldol Condensation Reaction Rate Demonstrates Steric and Electronic Substituent Effects in the Organic Chemistry Lab. Journal of Chemical Education, 98(5), 1732–1735. DOI: 10.1021/acs.jchemed.0c00448
  54. Davoodnia, A., Yassaghi, G. (2012). Solvent-Free Selective Cross-Aldol Condensation of Ketones with Aromatic Aldehydes Efficiently Catalyzed by a Reusable Supported Acidic Ionic Liquid. Chinese Journal of Catalysis, 33(11–12), 1950–1957. DOI: 10.1016/S1872-2067(11)60470-1
  55. Parejas, A., Cosano, D., Hidalgo-Carrillo, J., Ruiz, J., Marinas, A., Jiménez-Sanchidrián, C., Urbano, F. (2019). Aldol Condensation of Furfural with Acetone Over Mg/Al Mixed Oxides. Influence of Water and Synthesis Method. Catalysts, 9(2), 203. DOI: 10.3390/catal9020203
  56. Li, W., Mao, Y., Liu, Z., Zhang, J., Luo, J., Zhang, L., Qiao, Z. (2023). Chelated Ion‐Exchange Strategy toward BiOCl Mesoporous Single‐Crystalline Nanosheets for Boosting Photocatalytic Selective Aromatic Alcohols Oxidation. Advanced Materials, 2300396. DOI: 10.1002/adma.202300396
  57. Bárdos, E., Márta, V.A., Fodor, S., Kedves, E.-Z., Hernadi, K., Pap, Z. (2021). Hydrothermal Crystallization of Bismuth Oxychlorides (BiOCl) Using Different Shape Control Reagents. Materials, 14(9), 2261. DOI: 10.3390/ma14092261
  58. Pearson, R.G. (1995). The HSAB Principle — more quantitative aspects. Inorganica Chimica Acta, 240(1–2), 93–98. DOI: 10.1016/0020-1693(95)04648-8
  59. Salvador, J.A.R., Silvestre, S.M., Pinto, R.M.A., Santos, R.C., LeRoux, C. (2011). New Applications for Bismuth(III) Salts in Organic Synthesis: From Bulk Chemicals to Steroid and Terpene Chemistry. In Ollevier, T. (Ed.) Bismuth-Mediated Organic Reactions. pp. 143–177. DOI: 10.1007/128_2011_170

Last update:

No citation recorded.

Last update:

No citation recorded.