1Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298A-300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City, 700000, Vietnam
2Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
BibTex Citation Data :
@article{BCREC17658, author = {Nguyen Thi Kim Oanh and Nguyen Vinh Huu and Linh Xuan Nong}, title = {Bismuth Oxychloride as an Efficient Heterogeneous Catalyst for Aldol Condensation Reaction between Aldehydes and Ketones}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {18}, number = {2}, year = {2023}, keywords = {Aldol condensation; benzalacetone; Bismuth Oxychloride; heterogeneous catalyst}, abstract = { The aldol reaction is a cornerstone of modern synthetic organic chemistry in which the β-hydroxyketone was formed by the reaction of an enol or an enolate and a carbonyl compound. Benzalacetone is one of the fundamental building blocks of benzalacetone synthase structure that play an important role for construction of a variety of medicinally crucial phenylbutanoids, such as anti-inflammatory glucoside lindleyin in rhubarb and gingerol. The non-transition metal material attracted much attention from research groups on the world, such a potential catalyst as BiOCl for organic reaction due to its remarkably chemical and physical properties as relative stability, resistance of air and moisture, low toxicity. The BiOCl material was synthesized by the solvothermal method. The structure features of material were defined by modern analytic methods such as X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), Scaning Electron Microscope (SEM), and Nitrogen Adsorption-Desorption Isotherms. The BiOCl material was successfully utilized as a catalyst for the aldol condensation reaction of benzaldehyde and acetone. The reaction was performed in the mild condition with the presence of 10 mol% catalyst and 2 equivalent of Cs 2 CO 3 as base without by-product in very short reaction times and good yields. The benzalacetone product obtained around 85% yield at 120 °C for 24 h. The BiOCl material after reaction was recovered and reused many times without significant reducing of catalytic activity. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {173--185} doi = {10.9767/bcrec.17658}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/17658} }
Refworks Citation Data :
The aldol reaction is a cornerstone of modern synthetic organic chemistry in which the β-hydroxyketone was formed by the reaction of an enol or an enolate and a carbonyl compound. Benzalacetone is one of the fundamental building blocks of benzalacetone synthase structure that play an important role for construction of a variety of medicinally crucial phenylbutanoids, such as anti-inflammatory glucoside lindleyin in rhubarb and gingerol. The non-transition metal material attracted much attention from research groups on the world, such a potential catalyst as BiOCl for organic reaction due to its remarkably chemical and physical properties as relative stability, resistance of air and moisture, low toxicity. The BiOCl material was synthesized by the solvothermal method. The structure features of material were defined by modern analytic methods such as X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), Scaning Electron Microscope (SEM), and Nitrogen Adsorption-Desorption Isotherms. The BiOCl material was successfully utilized as a catalyst for the aldol condensation reaction of benzaldehyde and acetone. The reaction was performed in the mild condition with the presence of 10 mol% catalyst and 2 equivalent of Cs2CO3 as base without by-product in very short reaction times and good yields. The benzalacetone product obtained around 85% yield at 120 °C for 24 h. The BiOCl material after reaction was recovered and reused many times without significant reducing of catalytic activity. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th January 2024)