1Laboratoire de Chimie Appliquée et de Génie Chimique (LCAGC), Université Mouloud Mammeri, 150 0 0, Tizi-Ouzou, Algeria
2Laboratoire de Chimie du Gaz Naturel Facultéde Chimie, Université des Sciences et de la Technologie Houari Boumediène, BP 32 El-Alia, 16111, Bab-Ezzouar, Alger, Algeria
3Laboratory of Applied Chemistry and Materials (LabCAM), University of M’hamed Bougara of Boumerdes, Avenue de l'Indépendance Boumerdes, 35000, Algeria
4 Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail, RP42004, Tipaza, Algeria
BibTex Citation Data :
@article{BCREC17598, author = {Nadia Aider and Baya Djebarri and Fouzia Touahra and Hatem Layeb and Djamila Halliche}, title = {Studies of the Solvent-Free Knoevenagel Condensation over Commercial NiO compared with NiO Drived from Hydrotalcites}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {18}, number = {2}, year = {2023}, keywords = {NiO-HT; Commercial NiO; Knoevenagel reaction; Density functional theory (DFT).}, abstract = { In this study, we compared the effect of the commercial NiO, synthesis NiAl-HT and NiO-HT drived from hydrotalcite in Knoevenagel condensation reaction. The NiAl-HT sample was synthesized by the coprecipitation method with a molar ratio M 2+ /M 3+ = 2 at constant basic pH. X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were utilized to identify crystalline phases present in NiAl-HT, NiO-HT and commercial NiO. The chemical composition of the obtained solids was determined by Atomic Absorption Spectroscopy (AAS). Other techniques, such as Thermogravimetric Thermal Analyzer (TGA), Scanning Electron Microscopy (SEM) and Brunauere Emmette Teller Method (BET) were also used. As well as the BET showed the increase of the specific surface for the solid NiO-HT. The performance of the catalysts were studied in Knoevenagel condensation of benzaldehyde with ethyl acetoacetate without solvent to synthesis of organic compounds such as intermediates of dihydropyridines derivatives. The influence of different parameters, such as catalyst amount, reaction temperature and reaction time were optimized for studied the activity, the selectivity and the stability of the solids. Catalytic activity was in its lowest in the presence of NiAl-HT (26% of benzaldehyde conversion) whereas the benzaldehyde conversion increased to 77% in case of NiO-HT which can be explained by the presence of the basic sites of the NiO-HT oxides, a high surface area and a small crystallite size. Therefore, the lower increase in benzaldehyde conversion was noticed using commercial NiO (84%), perhaps owing to its high purity. A reaction mechanism is proposed by using density functional method (DFT). Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ) }, issn = {1978-2993}, pages = {186--199} doi = {10.9767/bcrec.17598}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/17598} }
Refworks Citation Data :
In this study, we compared the effect of the commercial NiO, synthesis NiAl-HT and NiO-HT drived from hydrotalcite in Knoevenagel condensation reaction. The NiAl-HT sample was synthesized by the coprecipitation method with a molar ratio M2+/M3+ = 2 at constant basic pH. X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were utilized to identify crystalline phases present in NiAl-HT, NiO-HT and commercial NiO. The chemical composition of the obtained solids was determined by Atomic Absorption Spectroscopy (AAS). Other techniques, such as Thermogravimetric Thermal Analyzer (TGA), Scanning Electron Microscopy (SEM) and Brunauere Emmette Teller Method (BET) were also used. As well as the BET showed the increase of the specific surface for the solid NiO-HT. The performance of the catalysts were studied in Knoevenagel condensation of benzaldehyde with ethyl acetoacetate without solvent to synthesis of organic compounds such as intermediates of dihydropyridines derivatives. The influence of different parameters, such as catalyst amount, reaction temperature and reaction time were optimized for studied the activity, the selectivity and the stability of the solids. Catalytic activity was in its lowest in the presence of NiAl-HT (26% of benzaldehyde conversion) whereas the benzaldehyde conversion increased to 77% in case of NiO-HT which can be explained by the presence of the basic sites of the NiO-HT oxides, a high surface area and a small crystallite size. Therefore, the lower increase in benzaldehyde conversion was noticed using commercial NiO (84%), perhaps owing to its high purity. A reaction mechanism is proposed by using density functional method (DFT). Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th January 2024)