skip to main content

Studies of the Solvent-Free Knoevenagel Condensation over Commercial NiO compared with NiO Drived from Hydrotalcites

1Laboratoire de Chimie Appliquée et de Génie Chimique (LCAGC), Université Mouloud Mammeri, 150 0 0, Tizi-Ouzou, Algeria

2Laboratoire de Chimie du Gaz Naturel Facultéde Chimie, Université des Sciences et de la Technologie Houari Boumediène, BP 32 El-Alia, 16111, Bab-Ezzouar, Alger, Algeria

3Laboratory of Applied Chemistry and Materials (LabCAM), University of M’hamed Bougara of Boumerdes, Avenue de l'Indépendance Boumerdes, 35000, Algeria

4 Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail, RP42004, Tipaza, Algeria

View all affiliations
Received: 5 Mar 2023; Revised: 3 May 2023; Accepted: 4 May 2023; Available online: 6 May 2023; Published: 30 Jul 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this study, we compared the effect of the commercial NiO, synthesis NiAl-HT and NiO-HT drived from hydrotalcite in Knoevenagel condensation reaction. The NiAl-HT sample was synthesized by the coprecipitation method with a molar ratio M2+/M3+ = 2 at constant basic pH. X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were utilized to identify crystalline phases present in NiAl-HT, NiO-HT and commercial NiO. The chemical composition of the obtained solids was determined by Atomic Absorption Spectroscopy (AAS). Other techniques, such as Thermogravimetric Thermal Analyzer (TGA), Scanning Electron Microscopy (SEM) and Brunauere Emmette Teller Method (BET) were also used. As well as the BET showed the increase of the specific surface for the solid NiO-HT. The performance of the catalysts were studied in Knoevenagel condensation of benzaldehyde with ethyl acetoacetate without solvent to synthesis of organic compounds such as intermediates of dihydropyridines derivatives. The influence of different parameters, such as catalyst amount, reaction temperature and reaction time were optimized for studied the activity, the selectivity and the stability of the solids. Catalytic activity was in its lowest in the presence of NiAl-HT (26% of benzaldehyde conversion) whereas the benzaldehyde conversion increased to 77% in case of NiO-HT which can be explained by the presence of the basic sites of the NiO-HT oxides, a high surface area and a small crystallite size. Therefore, the lower increase in benzaldehyde conversion was noticed using commercial NiO (84%), perhaps owing to its high purity. A reaction mechanism is proposed by using density functional method (DFT). Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)

Keywords: NiO-HT; Commercial NiO; Knoevenagel reaction; Density functional theory (DFT).
Funding: Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Algeria

Article Metrics:

  1. Johari, S., Johan, M.R., Khaligh, N.G. (2022). An Overview of Metal-free Sustainable Nitrogen-based Catalytic Knoevenagel Condensation Reaction‎. Organic & Biomolecular Chemistry, 20, 2164-2186. DOI: 10.1039/D2OB00135G
  2. Van Beurden, K., de Koning, S., Molendijk, D., Van Schijndel, J. (2020). The Knoevenagel reaction: a review of the unfinished treasure map to forming carbon–carbon bonds. Green Chemistry Letters and Reviews, 13, 349-364. DOI: 10.1080/17518253.2020.1851398
  3. Chakraborty, S., Paul, A.R., Majumdar, S. (2022). Base and metal free true recyclable medium for Knoevenagel condensation reaction in SDS-ionic liquid-aqueous miceller composite system. Results in Chemistry, 4, 100294. DOI: 10.1016/j.rechem.2022.100294
  4. Tietze, L.F., Rackelmann, N. (2004). Domino reactions in the synthesis of heterocyclic natural products and analogs. Pure and Applied Chemistry, 76, 1967-1983. DOI: 10.1351/pac200476111967
  5. Dumbre, D.K., Mozammel, T., Selvakannan, P.R., Hamid, S.B.A., Choudhary, V.R., Bhargava, S.K. (2015). Thermally decomposed mesoporous Nickel Iron hydrotalcite: An active solid-base catalyst for solvent-free Knoevenagel condensation. Journal of Colloid and Interface Science, 441, 52-58. DOI: 10.1016/j.jcis.2014.11.018
  6. Bartoli, G., Bosco, M., Carlone, A., Dalpozzo, R., Galzerano, P., Melchiorre, P., Sambri, L. (2008). Magnesium perchlorate as efficient Lewis acid for the Knoevenagel condensation between β-diketones and aldehydes. Tetrahedron Letters, 49, 2555-2557. DOI: 10.1016/j.tetlet.2008.02.093
  7. Attanasi, O., Filippone, P., Mei, A. (1983). Effect of metal ions in organic synthesis. Part XVI. Knoevenagel condensations of aldehydes and tosylhydrazones with 2, 4-pentanedione by copper (II) chloride-catalyzed reaction. Synthetic Communications, 13, 1203-1208. DOI: 10.1080/00397918308063734
  8. Narsaiah, A.V., Nagaiah, K. (2003). An efficient knoevenagel condensation catalyzed by LaCl3.7H2O in heterogeneous medium. Synthetic Communications, 33, 3825-3832. DOI: 10.1081/SCC-120025194
  9. Rao, P.S., Venkataratnam, R.V. (1991). Zinc chloride as a new catalyst for Knoevenagel condensation. Tetrahedron Letters, 32, 5821-5822. DOI: 10.1016/S0040-4039(00)93564-0
  10. Pridgen, L.N., Huang, K., Shilcrat, S., Tickner-Eldridge, A., DeBrosse, C., Haltiwanger, R.C. (1999). An unprecedented asymmetric Nazarov cyclization for the synthesis of nonracemic indanes as endothelin receptor antagonists. Synlett, 1999, 1612-1614. DOI: 10.1055/s-1999-2912
  11. Ilangovan, A., Muralidharan, S., Maruthamuthu, S. (2011). A systematic study on Knoevenagel reaction and Nazarov cyclization of less reactive carbonyl compounds using rare earth triflates and its applications. Journal of the Korean Chemical Society, 55, 1000-1006. DOI: 10.5012/jkcs.2011.55.6.1000
  12. Dumbre, D.K., Mozammel, T., Selvakannan, P.R., Hamid, S.B.A., Choudhary, V.R., Bhargava, S.K. (2015). Thermally decomposed mesoporous Nickel Iron hydrotalcite: An active solid-base catalyst for solvent-free Knoevenagel condensation. Journal of Colloid and Interface Science, 441, 52-58. DOI: 10.1016/j.jcis.2014.11.018
  13. da Silva, J.F., da Silva Ferracine, E.D., Cardoso, D. (2022). Improved accessibility of Na-LTA zeolite catalytic sites for the Knoevenagel condensation reaction. Microporous and Mesoporous Materials, 331, 111640. DOI: 10.1016/j.micromeso.2021.111640
  14. Pérez, C.N., Monteiro, J.L.F., López Nieto, J.M., Henriques, C.A. (2009). Influence of basic properties of Mg, Al-mixed oxides on their catalytic activity in knoevenagel condensation between benzaldehyde and phenylsulfonylacetonitrile. Química Nova, 32, 2341-2346. DOI: 10.1590/S0100-40422009000900020
  15. Testa, M.L., La Parola, V. (2021). Sulfonic acid-functionalized inorganic materials as efficient catalysts in various applications: A mini review. Catalysts, 11, 1143. DOI: 10.3390/catal11101143
  16. Aider, N., Touahra, F., Bali, F., Djebarri, B., Lerari, D., Bachari, K., Halliche, D. (2018). Improvement of catalytic stability and carbon resistance in the process of CO2 reforming of methane by CoAl and CoFehydrotalcite-derived catalysts. International Journal of Hydrogen Energy, 43, 8256-8266. DOI: 10.1016/j.ijhydene.2018.03.118
  17. Bouteraa, S., Saiah, F. B. D., Hamouda, S., Bettahar, N. (2020). Zn-M-CO3 Layered double hydroxides (M= Fe, Cr, or Al): synthesis, characterization, and removal of aqueous indigo carmine. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 43-54. DOI: 10.9767/bcrec.15.1.5053.43-54
  18. Jiang, Z., Sun, F., Frost, R.L., Ayoko, G., Qian, G., Ruan, X. (2022). Adsorption characteristics of assembled and unassembled Ni/Cr layered double hydroxides towards methyl orange. Journal of Colloid and Interface Science, 617, 363-371. DOI: 10.1016/j.jcis.2022.03.022
  19. Djebarri, B., Touahra, F., Aider, N., Bali, F., Sehailia, M., Chebout, R., Halliche, D. (2020). Enhanced Long-term Stability and Carbon Resistance of Ni/MnxOy-Al2O3 Catalyst in Near-equilibrium CO2 Reforming of Methane for Syngas Production. Bulletin of Chemical Reaction Engineering & Catalysis, 15, 331-347. DOI: 10.9767/bcrec.15.2.6983.331-347
  20. Cavani, F., Trifiro, F., Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173-301. DOI: 10.1016/0920-5861(91)80068-K
  21. El Khanchaoui, A., Sajieddine, M., Mansori, M., Essoumhi, A. (2022). Anionic dye adsorption on ZnAlhydrotalcite-type and regeneration studies based on “memory effect”. International Journal of Environmental Analytical Chemistry, 102, 3542-3560. DOI: 10.1080/03067319.2020.1772769
  22. Lu, Y., Jiang, B., Fang, L., Ling, F., Gao, J., Wu, F., Zhang, X. (2016). High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption. Chemosphere, 152, 415-422. DOI: 10.1016/j.chemosphere.2016.03.015
  23. Touahra, F., Sehailia, M., Halliche, D., Bachari, K., Saadi, A., Cherifi, O. (2016). (MnO/Mn3O4)-NiAl nanoparticles as smart carbon resistant catalysts for the production of syngas by means of CO2 reforming of methane: Advocating the role of concurrent carbothermic redox looping in the elimination of coke. International Journal of Hydrogen Energy, 46, 21140-21156. DOI: 10.1016/j.ijhydene.2016.08.194
  24. Devi, R., Begum, P., Bharali, P., Deka, R. C. (2018). Comparative study of potassium salt-loaded MgAlhydrotalcites for the Knoevenagel condensation reaction. ACS Omega, 3, 7086-7095. DOI: 10.1021/acsomega.8b00767
  25. Mancipe, S., Castillo, J.C., Brijaldo, M.H., López, V.P., Rojas, H., Macías, M.A., Luque, R. (2022). B-Containing Hydrotalcites Effectively Catalyzed Synthesis of 3-(Furan-2-yl) acrylonitrile Derivatives via the Knoevenagel Condensation. ACS Sustainable Chemistry & Engineering, 10, 12602-12612. DOI: 10.1021/acssuschemeng.2c03209
  26. Jadhav, A.L., Yadav, G.D. (2019). Clean synthesis of benzylidenemalononitrile by Knoevenagel condensation of benzaldehyde and malononitrile: effect of combustion fuel on activity and selectivity of Ti-hydrotalcite and Zn-hydrotalcite catalysts. Journal of Chemical Sciences, 131, 1-14. DOI: 10.1007/s12039-019-1641-6
  27. Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays. Catalysis Today, 41, 53-71. DOI: 10.1016/S0920-5861(98)00038-8
  28. Tichit, D., Coq, B., Cerneaux, S., Durand, R. (2002). Condensation of aldehydes for environmentally friendly synthesis of 2-methyl-3-phenyl-propanal by heterogeneous catalysis. Catalysis Today, 75, 197-202. DOI: 10.1016/S0920-5861(02)00069-X
  29. Veloso, C.O., Pérez, C.N., de Souza, B.M., Lima, E.C., Dias, A.G., Monteiro, J.L.F., Henriques, C.A. (2008). Condensation of glyceraldehyde acetonide with ethyl acetoacetate over Mg, Al-mixed oxides derived from hydrotalcites. Microporous and Mesoporous Materials, 107, 23-30. DOI: 10.1016/j.micromeso.2007.05.036
  30. Palapa, N.R., Siregar, P.M.S.B.N., Wijaya, A., Taher, T., Lesbani, A. (2022). High Selectivity and Stability Structure of Layered Double Hydroxide-Biochar for Removal Cd(II). Bulletin of Chemical Reaction Engineering & Catalysis, 17, 520-532. DOI: 10.9767/bcrec.17.3.14288.520-532
  31. Mokhtar, M., Saleh, T.S., Basahel, S.N. (2012). Mg–Al hydrotalcites as efficient catalysts for aza-Michael addition reaction: A green protocol. Journal of Molecular Catalysis A: Chemical, 353, 122-131. DOI: 10.1016/j.molcata.2011.11.015
  32. Pérez, C.N., Pérez, C.A., Henriques, C.A., Monteiro, J.L.F. (2004). Hydrotalcites as precursors for Mg, Al-mixed oxides used as catalysts on the aldol condensation of citral with acetone. Applied Catalysis A: General, 272, 229-240. DOI: 10.1016/j.apcata.2004.05.045
  33. Aider, N., Smuszkiewicz, A., Pérez-Mayoral, E., Soriano, E., Martín-Aranda, R.M., Halliche, D., Menad, S. (2014). Amino-grafted SBA-15 material as dual acid–base catalyst for the synthesis of coumarin derivatives. Catalysis Today, 227, 215-222. DOI: 10.1016/j.cattod.2013.10.016
  34. Majumdar, K.C., Taher, A., Ray, K. (2009). Domino-Knoevenagel-hetero-Diels–Alder reactions: an efficient one-step synthesis of indole-annulated thiopyranobenzopyran derivatives. Tetrahedron Letters, 50, 3889-3891. DOI: 10.1016/j.tetlet.2009.04.054
  35. Gu, X., Tang, Y., Zhang, X., Luo, Z., Lu, H. (2016). Organocatalytic Knoevenagel condensation by chiral C2-symmetric tertiary diamines. New Journal of Chemistry, 40, 6580-6583. DOI: 10.1039/C6NJ00613B
  36. Sani, A., Hassan, D., Khalil, A.T., Mughal, A., El-Mallul, A., Ayaz, M., Maaza, M. (2021). Floral extracts-mediated green synthesis of NiO nanoparticles and their diverse pharmacological evaluations. Journal of Biomolecular Structure and Dynamics, 39, 4133-4147. DOI: 10.1080/07391102.2020.1775120
  37. Baranwal, K., Dwivedi, L.M., Siddique, S., Tiwari, S., Singh, V. (2021). Chitosan Grown Copper Doped Nickel Oxide Nanoparticles: An Excellent Catalyst for Reduction of Nitroarenes. Journal of Cluster Science, 32, 937-947. DOI: 10.1007/s10876-020-01861-0
  38. Aoudjit, L., Halliche, D., Bachari, K., Saadi, A., Cherifi, O. (2017). Nickel-containing mesoporous silicas as a catalyst for the Pechmann condensation reaction. Theoretical and Experimental Chemistry, 53, 112-121. DOI: 10.1007/s11237-017-9507-9
  39. Becke, A.D. (1993). Density-Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98, 5648-5652. DOI: 10.1063/1.46491
  40. Lee, C., Yang, W., Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785. DOI: 10.1103/PhysRevB.37.785
  41. Hehre, W.J., Radom, L., Schleyer, P.v.R., People, J. (1986). Ab initio Molecular Orbital Theory. John Wiley and Sons
  42. Morioka, K., Asami, Y., Tanaka, K., ONO, T., Saheki, S., Harada-Saheki, K., Tanaka, T. (1980). Isozyme patterns of pyruvate kinase and differentiation of Friend leukemia cells. GANN Japanese Journal of Cancer Research, 71, 146-150. DOI: 10.20772/cancersci1959.71.1_146
  43. Schlegel, H.B. (1995). Geometry optimization on potential energy surfaces. In Yarkony, D.R. (Ed.) Modern Electronic Structure Theory: Part I, pp. 459-500. DOI: 10.1142/9789812832108_0008
  44. Frisch, M.J.; Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J. R. et al., Gaussian, Inc., Wallingford CT, 2016
  45. Makri, M.M., Vasiliades, M.A., Petallidou, K.C., Efstathiou, A.M. (2016). Effect of support composition on the origin and reactivity of carbon formed during dry reforming of methane over 5wt% Ni/Ce1−xMxO2−δ (M= Zr4+, Pr3+) catalysts. Catalysis Today, 259, 150-164. DOI: 10.1016/j.cattod.2015.06.010
  46. Mette, K., Kühl, S., Tarasov, A., Willinger, M. G., Kröhnert, J., Wrabetz, S., Lunkenbein, T. (2016). High-temperature stable Ni nanoparticles for the dry reforming of methane. ACS Catalysis, 6, 7238-7248. DOI: 10.1021/acscatal.6b01683
  47. Braterman, P.S., Xu, Z.P., Yarberry, F. (2004). Layered double hydroxides (LDHs). Handbook of Layered Materials, 8, 373-474. DOI: 10.1201/9780203021354.ch8
  48. Djebarri, B., Gonzalez-Delacruz, V.M., Halliche, D., Bachari, K., Saadi, A., Caballero, A., Cherifi, O. (2014). Promoting effect of Ce and Mg cations in Ni/Al catalysts prepared from hydrotalcites for the dry reforming of methane. Reaction Kinetics, Mechanisms and Catalysis, 111, 259-275. DOI: 10.1007/s11144-013-0646-2
  49. Rivera, J.A., Fetter, G., Jiménez, Y., Xochipa, M.M., Bosch, P. (2007). Nickel distribution in (Ni,Mg)/Al-layered double hydroxides. Applied Catalysis A: General, 316(2), 207-211. DOI: 10.1016/j.apcata.2006.09.031
  50. Kloprogge, J.T., Wharton, D., Hickey, L., Frost, R.L. (2002). Infrared and Raman study of interlayer anions CO32−, NO3−, SO42− and ClO4− in Mg/Al-hydrotalcite. American Mineralogist, 87, 623-629. DOI: 10.2138/am-2002-5-604
  51. Occelli, M.L., Olivier, J.P., Auroux, A., Kalwei, M., Eckert, H. (2003). Basicity and porosity of a calcined hydrotalcite-type material from nitrogen porosimetry and adsorption microcalorimetry methods. Chemistry of Materials, 15, 4231-4238. DOI: 10.1021/cm030105b
  52. Khairnar, S.D., Shrivastava, V.S. (2019). Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: a comparative study. Journal of Taibah University for Science, 13, 1108-1118. DOI: 10.1080/16583655.2019.1686248
  53. Chmielarz, L., Kuśtrowski, P., Rafalska-Łasocha, A., Dziembaj, R. (2002). Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems. Thermochimica Acta, 395, 225-236. DOI: 10.1016/S0040-6031(02)00214-9
  54. Beach, E.R., Shqau, K., Brown, S.E., Rozeveld, S.J., Morris, P.A. (2009). Solvothermal synthesis of crystalline nickel oxide nanoparticles. Materials Chemistry and Physics, 115, 371-377. DOI: 10.1016/j.matchemphys.2008.12.018
  55. Chaudhary, R.G., Tanna, J.A., Mondal, A., Gandhare, N.V., Juneja, H.D. (2017). Silica-coated nickel oxide a core-shell nanostructure: synthesis, characterization and its catalytic property in one-pot synthesis of malononitrile derivative. Journal of the Chinese Advanced Materials Society, 5, 103-117. DOI: 10.1080/22243682.2017.1296371
  56. Perozo-Rondon, E., Calvino-Casilda, V., Martín-Aranda, R.M., Casal, B., Duran-Valle, C.J., Rojas-Cervantes, M.L. (2006). Catalysis by basic carbons: Preparation of dihydropyridines. Applied Surface Science, 252, 6080-6083. DOI: 10.1016/j.apsusc.2005.11.017
  57. Lett, J.A., Sagadevan, S., Weldegebrieal, G. K., Fatimah, I. (2022). Hydrothermal synthesis and photocatalytic activity of NiO nanoparticles under visible light illumination. Bulletin of Chemical Reaction Engineering & Catalysis, 17, 340-349. DOI: 10.9767/bcrec.17.2.13680.340-349

Last update:

No citation recorded.

Last update:

No citation recorded.