School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
BibTex Citation Data :
@article{BCREC17061, author = {Linh Vo Quang and Anh-Tuan Vu}, title = {Preparation of Au/ZnO/Fe3O4 Composite for Degradation of Tartrazine under Visible Light}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {18}, number = {1}, year = {2023}, keywords = {Composite; Photocatalyst; Fenton; Kinetic; Dyes}, abstract = { Zinc oxide has been shown to be a potential photocatalyst under UV light but its catalytic activity is limited under visible light due to its wide bandgap energy and rapid recombination of electrons and holes. Besides the catalytic recovery is a challenging issue because of its dispersion in solution. Previous work has shown that the interaction of gold nanoparticles with ZnO can reduce the band gap energy (E g ) and plasmon resonance (SPR) as well as the formation of the Schottky barrier in Au/ZnO composite can reduce the recombination of electrons and holes. In this study, Au/ZnO/Fe 3 O 4 (AZF) composites were prepared by a simple mixing method using polyvinyl alcohol (PVA) as a binder. As-prepared composites were characterized by Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), UV-Vis Diffuse Reflectance (UV-Vis-DR), and Fourier Transform Infra Red (FT-IR). The catalytic efficiency of as-prepared samples was evaluated through the decomposition of tartrazine (TA), a colorant that is difficult to decompose in wastewater and has harmful effects on human health. The effects of reaction parameters such as the content of PVA, solution pH, and oxidizing agents (O 2 and H 2 O 2 ) on the catalytic efficiency were studied. The AZF at PVA of 0.0125 g showed the highest performance among as-prepared samples. With the presence of 12 mM H 2 O 2 in the catalyst system, the degradation efficiency and reaction rate of TA in composite increased to 81.5% and 0.020 min − 1 , respectively. At this condition, photocatalysis and Fenton system catalysis occurred together. The catalytic mechanism of Tartrazine (TA) on composite was proposed and the reaction of TA was studied by the first-order kinetic model. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {71--84} doi = {10.9767/bcrec.17061}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/17061} }
Refworks Citation Data :
Zinc oxide has been shown to be a potential photocatalyst under UV light but its catalytic activity is limited under visible light due to its wide bandgap energy and rapid recombination of electrons and holes. Besides the catalytic recovery is a challenging issue because of its dispersion in solution. Previous work has shown that the interaction of gold nanoparticles with ZnO can reduce the band gap energy (Eg) and plasmon resonance (SPR) as well as the formation of the Schottky barrier in Au/ZnO composite can reduce the recombination of electrons and holes. In this study, Au/ZnO/Fe3O4 (AZF) composites were prepared by a simple mixing method using polyvinyl alcohol (PVA) as a binder. As-prepared composites were characterized by Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), UV-Vis Diffuse Reflectance (UV-Vis-DR), and Fourier Transform Infra Red (FT-IR). The catalytic efficiency of as-prepared samples was evaluated through the decomposition of tartrazine (TA), a colorant that is difficult to decompose in wastewater and has harmful effects on human health. The effects of reaction parameters such as the content of PVA, solution pH, and oxidizing agents (O2 and H2O2) on the catalytic efficiency were studied. The AZF at PVA of 0.0125 g showed the highest performance among as-prepared samples. With the presence of 12 mM H2O2 in the catalyst system, the degradation efficiency and reaction rate of TA in composite increased to 81.5% and 0.020 min−1, respectively. At this condition, photocatalysis and Fenton system catalysis occurred together. The catalytic mechanism of Tartrazine (TA) on composite was proposed and the reaction of TA was studied by the first-order kinetic model. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th January 2024)