skip to main content

Production of High-Octane Number Gasoline from Basra Low Octane-Number Gas Condensate and Ethanol over Modified Zn/ZSM5 Zeolite Catalyst

Department of Chemical Engineering, Collage of Engineering, University of Al-Nahrain, Al-Jadriyah, Baghdad, Iraq

Received: 18 Dec 2022; Revised: 22 Jan 2023; Accepted: 6 Feb 2023; Available online: 20 Feb 2023; Published: 30 Mar 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Catalytic transformation of a low-octane number stable gas condensate to high-octane number gasoline (RON: research octane number) is an economically and strategically vital process. In this research, modifying ZSM5 zeolite (80 Si/Al ratio) by impregnation with 2% Zn (Zn/ZSM5) was carried out to increase the selectivity for isomerization and aromatization thereby enhance the octane number. The process was conducted by using stable gas condensate 85 vol% with 15 vol% ethanol in a fixed bed reactor. Zn/ZSM5 and ZSM5 were examined in a pilot scale under different conditions temperature 360-420 °C LHSV1.2-2 h1, pressure 5 bar. Catalysts were characterized before and after Zn loading using Fourier Transform Infra Red (FT-IR), Brunauer-Emmett-Teller (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TEM), and N2-adsorption. The SEM, FESEM, and TEM have shown that no change in morphology and metal distribution. The XRD and FTIR characterizations revealed the modified catalysts retained their crystallinity after metal impregnation while N2-adsorption isotherm demonstrates no significant change in porosity. The results of Zn/ZSM5 display an optimum result at 420 °C, 1.2 h1, 5 bar with enhancement of RON from 60.5 to 89 whereas ZSM5 shows RON enhancement from 60.5 to 82. Post Zn loading, PONA test has shown an increase for iso-paraffin from 45.4 to 47.4%, and aromatics from 10.8 to 14. The findings translate the effectiveness of using Zn on ZSM5 for gas condensate – gasoline transformation. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Gas condensate to gasoline; ethanol; Zinc-modified Zsm-5; Aromatization; Octane number
Funding: University of Al-Nahrian;Petroleum Research & Development Center at the Ministry of Oil-Iraq

Article Metrics:

  1. Speight, J.G. (2011). Production of Hydrocarbons from Natural Gas. In: Handbook of Industrial Hydrocarbon Processes. Elsevier, pp. 127–162. DOI: 10.1016/b978-0-7506-8632-7.10004-0
  2. Shoaib, A.M., Bhran, A.A., Awad, M.E., El-Sayed, N.A., Fathy, T. (2018). Optimum operating conditions for improving natural gas dew point and condensate throughput. Journal of Natural Gas Science and Engineering, 49, 324–330. DOI: 10.1016/j.jngse.2017.11.008
  3. Hassan, A., Mahmoud, M., Al-Majed, A., Alawi, M.B., Elkatatny, S., BaTaweel, M., Al-Nakhli, A. (2019). Gas condensate treatment: A critical review of materials, methods, field applications, and new solutions. Journal of Petroleum Science and Engineering, 177, 602–613. DOI: 10.1016/j.petrol.2019.02.089
  4. Hammadi, A.N., Shakir, I.K. (2020). Enhancement the octane number of light naphtha by adsorption process. AIP Conference Proceedings, 2213, 020044. DOI: 10.1063/5.0000129
  5. Asgari, A., Dianatirad, M., Ranjbaran, M., Sadeghi, A.R., Rahimpour, M.R. (2014). Methanol treatment in gas condensate reservoirs: A modeling and experimental study. Chemical Engineering Research and Design, 92(5), 876–890. DOI: 10.1016/j.cherd.2013.08.015
  6. Kamari, A., Sattari, M., Mohammadi, A.H., Ramjugernath, D. (2015). Reliable method for the determination of surfactant retention in porous media during chemical flooding oil recovery. Fuel, 158, 122–128. DOI: 10.1016/j.fuel.2015.05.013
  7. Ramirez, J.A., Brown, R.J., Rainey, T.J. (2017). Liquefaction biocrudes and their petroleum crude blends for processing in conventional distillation units. Fuel Processing Technology, 167, 674–683. DOI: 10.1016/j.fuproc.2017.08.022
  8. Heting, H., Baojia, H., Yiwen, H., Xing, L.I., Hui, T. (2017). Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in western South China Sea : A case study of Lingshui 17-2 gas field in Qiongdongnan Basin. Petroleum Exploration and Development, 44(3), 409–417. DOI: 10.1016/S1876-3804(17)30047-2
  9. Khomyakov, I.S., Gerasina, T.A. (2019). Refinement of Gas Condensate Straight-Run Gasoline on MFI-Type Zeolites Modified with Binary Compounds. IOP Conference Series: Earth and Environmental Science, 272(2), 022145. DOI: 10.1088/1755-1315/272/2/022145
  10. Christensen, E., Yanowitz, J., Ratcli, M., Mccormick, R.L., (2011). Renewable Oxygenate Blending Effects on Gasoline Properties. Energy & Fuels, 25(10), 4723–4733. DOI: 10.1021/ef2010089
  11. Abdellatief, T.M.M., Ershov, M.A., Kapustin, V.M. (2020). New recipes for producing a high-octane gasoline based on naphtha from natural gas condensate. Fuel, 276, 118075. DOI: 10.1016/j.fuel.2020.118075
  12. Primo, A., Garcia, H. (2014). Zeolites as catalysts in oil refining. Chemical Society Reviews, 43(22), 7548–7561. DOI: 10.1039/c3cs60394f
  13. Choudary, N.V., Newalkar, B.L. (2011). Use of zeolites in petroleum refining and petrochemical processes: Recent advances. Journal of Porous Materials, 18(6), 685–692. DOI: 10.1007/s10934-010-9427-8
  14. Hajimirzaee, S., Mehr, A.S., Kianfar, E. (2020). Modified ZSM-5 Zeolite for Conversion of LPG to Aromatics Modified ZSM-5 Zeolite for Conversion of LPG to Aromatics. Polycyclic Aromatic Compounds, 42(5), 2334–2347. DOI: 10.1080/10406638.2020.1833048
  15. Erofeev, V.I., Medvedev, A.S., Khomyakov, I.S., Erofeeva, E. V. (2013). Conversion of gas-condensate straight-run gasolines to high-octane gasolines over zeolite catalysts modified with metal nanopowders. Russian Journal of Applied Chemistry, 86(7), 979–985. DOI: 10.1134/S1070427213070069
  16. Nabgan, W., Rashidzadeh, M., Nabgan, B. (2018). The catalytic naphtha reforming process : hydrodesulfurization, catalysts and zeoforming. Environmental Chemistry Letters, 16, 507–522. DOI: 10.1007/s10311-018-0707-x
  17. Belinskaya, N., Altynov, A., Bogdanov, I., Popok, E., Kirgina, M., Simakov, D.S.A. (2019). Production of Gasoline Using Stable Gas Condensate and Zeoforming Process Products as Blending Components. Energy and Fuels, 33(5), 4202–4210. DOI: 10.1021/acs.energyfuels.9b00591
  18. Nabgan, W., Nabgan, B., Amran, T., Abdullah, T., Wijayanuddin, M. (2021). Development of zeolites for zeoforming reaction of naphtha. Malaysian Journal of Catalysis, 5, 10–18
  19. Kirgina, M., Belinskaya, N., Altynov, A., Bogdanov, I., Temirbolat, A. (2020). Transformations of stable gas condensate hydrocarbons into high-octane gasoline components over ZSM-5 zeolite catalyst. Journal of Natural Gas Science and Engineering, 84, 103605. DOI: 10.1016/j.jngse.2020.103605
  20. Saxena, S.K., Viswanadham, N., Al-muhtaseb, A.H. (2013). Enhanced production of high octane gasoline blending stock from methanol with improved catalyst life on nano-crystalline ZSM-5 catalyst. Journal of Industrial and Engineering Chemistry, 20(5), 2876–2882. DOI: 10.1016/j.jiec.2013.11.021
  21. Wan, Z., Li, G.K., Wang, C., Yang, H., Zhang, D. (2018). Effect of reaction conditions on methanol to gasoline conversion over nanocrystal ZSM-5 zeolite. Catalysis Today, 314, 107–113. DOI: 10.1016/j.cattod.2018.01.017
  22. Bi, Y., Wang, Y., Chen, X., Yu, Z., Xu, L. (2014). Methanol aromatization over HZSM-5 catalysts modified with different zinc salts. Chinese Journal of Catalysis, 35(10), 1740–1751. DOI: 10.1016/S1872-2067(14)60145-5
  23. Jarvis, J., Wong, A., He, P., Li, Q., Song, H. (2018). Catalytic aromatization of naphtha under methane environment: Effect of surface acidity and metal modification of HZSM-5. Fuel, 223, 211–221. DOI: 10.1016/j.fuel.2018.03.045
  24. Godwin, G., Abdulazeez, O., Atta, Y., Mukhtar, B., Yakubu, B. (2020). Highly selective and stable Zn–Fe/ZSM‑5 catalyst for aromatization of propane. Applied Petrochemical Research, 10, 55–65. DOI: 10.1007/s13203-020-00245-9
  25. Shim, H., Hong, J., Ha, K.S. (2022). Efficient Utilization of Hydrocarbon Mixture to Produce Aromatics over Zn/ZSM-5 and Physically Mixed with ZSM-5. Catalysts, 12(5), 501. DOI: 10.3390/catal12050501
  26. Vichaphund, S., Aht-Ong, D., Sricharoenchaikul, V., Atong, D. (2015). Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renewable Energy, 79(1), 28–37. DOI: 10.1016/j.renene.2014.10.013
  27. Ramos, R., García, A., Botas, J.A., Serrano, D.P. (2016). Enhanced Production of Aromatic Hydrocarbons by Rapeseed Oil Conversion over Ga and Zn Modified ZSM-5 Catalysts. Industrial and Engineering Chemistry Research, 55(50), 12723–12732. DOI: 10.1021/acs.iecr.6b03050
  28. Kianfar, E., Hajimirzaee, S., mousavian, S., Mehr, A.S. (2020). Zeolite-based catalysts for methanol to gasoline process: A review. Microchemical Journal, 156, 104822. DOI: 10.1016/j.microc.2020.104822
  29. Al-Kandari, H., Al-Kandari, S., Al-Kharafi, F., Katrib, A. (2009). Molybdenum-Based Catalysts for Upgrading Light Naphtha Linear Hydrocarbon Compounds. Energy & Fuels, 23(12), 5737–5742. DOI: 10.1021/ef900617d
  30. Ogunronbi, K.E., Al-Yassir, N., Al-Khattaf, S. (2015). New Insights into Hierarchical metal-containing Zeolites; Synthesis and Kinetic Modeling of Mesoporous Gallium-containing ZSM-5 for Propane Aromatization. Journal of Molecular Catalysis A: Chemical, 406, 1–18. DOI: 10.1016/j.molcata.2015.05.005
  31. Dauda, I.B., Yusuf, M., Gbadamasi, S., Bello, M., Atta, A.Y., Aderemi, B.O., Jibril, B.Y. (2020). Highly Selective Hierarchical ZnO/ZSM-5 Catalysts for Propane Aromatization. ACS Omega, 5(6), 2725–2733. DOI: 10.1021/acsomega.9b03343
  32. Wang, X., Gao, X., Dong, M., Zhao, H., Huang, W. (2015). Production of gasoline range hydrocarbons from methanol on hierarchical ZSM-5 and Zn/ZSM-5 catalyst prepared with soft second template. Journal of Energy Chemistry, 24(4), 490–496. DOI: 10.1016/j.jechem.2015.06.009
  33. Niu, X., Gao, J., Wang, K., Miao, Q., Dong, M., Wang, G., Fan, W., Qin, Z., Wang, J. (2017). Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics. Fuel Processing Technology, 157, 99–107. DOI: 10.1016/j.fuproc.2016.12.006
  34. Liu, M., Cui, T., Guo, X., Li, J., Song, C. (2021). Stable Zn@ZSM-5 catalyst via a dry gel conversion process for methanol-to-aromatics reaction. Microporous and Mesoporous Materials, 312, 110696. DOI: 10.1016/j.micromeso.2020.110696
  35. Sims, S., Adebayo, A., Lobichenko, E., Lishchiner, I., Malova, O., Us, S. (2017). Methaforming: Novel Process for Producing High-Octane Gasoline from Naphtha and Methanol at Lower CAPEX and OPEX. URL: https://static1.squarespace.com/static/58a254c3c534a53002f008a3/t/58b0f1be579fb3b2015edfc0/1487991236692/NGTS%2BAFPM%2BPaper%2B12.1.2017.pdf (24 Feb 2023)
  36. Soltanali, S., Mohaddecy, S.R.S., Mashayekhi, M., Rashidzadeh, M. (2020). Catalytic upgrading of heavy naphtha to gasoline: Simultaneous operation of reforming and desulfurization in the absence of hydrogen. Journal of Environmental Chemical Engineering, 8(6), 104548. DOI: 10.1016/j.jece.2020.104548
  37. Paquin, F., Rivnay, J., Salleo, A., Stingelin, N., Silva, C. (2015). Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. Journal of Materials Chemistry C, 3, 10715–10722. DOI: 10.1039/C5TC02043C
  38. Rostamizadeh, M., Yaripour, F., Hazrati, H. (2018). Ni-doped high silica HZSM-5 zeolite (Si/Al = 200) nanocatalyst for the selective production of olefins from methanol. Journal of Analytical and Applied Pyrolysis, 132, 1–10. DOI: 10.1016/j.jaap.2018.04.003
  39. Omar, B.M., Bita, M., Louafi, I., Djouadi, A. (2018). Esterification process catalyzed by ZSM-5 zeolite synthesized via modified hydrothermal method. MethodsX, 5, 277–282. DOI: 10.1016/j.mex.2018.03.004
  40. Oseke, G.G., Atta, A.Y., Mukhtar, B., El-Yakubu, B.J., Aderemi, B.O. (2021). Increasing the catalytic stability of microporous Zn/ZSM-5 with copper for enhanced propane aromatization. Journal of King Saud University - Engineering Sciences, 33(8), 531–538. DOI: 10.1016/j.jksues.2020.07.014
  41. Kianfar, E., Salimi, M., Pirouzfar, V., Koohestani, B. (2018). Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. International Journal of Applied Ceramic Technology, 15(3), 734–741. DOI: 10.1111/ijac.12830
  42. Espindola, J.S., Gilbert, C.J., Perez-Lopez, O.W., Trierweiler, J.O., Huber, G.W. (2020). Conversion of furan over gallium and zinc promoted ZSM-5: The effect of metal and acid sites. Fuel Processing Technology, 201, 106319. DOI: 10.1016/j.fuproc.2019.106319
  43. Long, H., Jin, F., Xiong, G., Wang, X. (2014). Effect of lanthanum and phosphorus on the aromatization activity of Zn/ZSM-5 in FCC gasoline upgrading. Microporous and Mesoporous Materials, 198, 29–34. DOI: 10.1016/j.micromeso.2014.07.016
  44. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. DOI: 10.1515/pac-2014-1117
  45. Tshabalala, T.E., Scurrell, M.S. (2015). Aromatization of n-hexane over Ga, Mo and Zn modi fi ed H-ZSM-5 zeolite catalysts. Catalysis Communications, 72, 49–52. DOI: 10.1016/j.catcom.2015.06.022
  46. Jarvis, J.S., Harrhy, J.H., He, P., Wang, A., Liu, L., Song, H. (2019). Highly selective aromatization and isomerization of N-alkanes from bimetallic Pt-Zn nanoparticles supported on a uniform aluminosilicate. Chemical Communications, 55(23), 3355–3358. DOI: 10.1039/c9cc00338j
  47. Mahale, R.S., Parikh, P.A. (2020). Aromatization of n-hexane: Synergism afforded by C1 -C3 alcohols. Chemical Engineering Science, 217, 115519. DOI: 10.1016/j.ces.2020.115519
  48. Elsayed, H.A., Menoufy, M.F., Shaban, S.A., Ahmed, H.S., Heakal, B.H. (2017). Optimization of the reaction parameters of heavy naphtha reforming process using Pt-Re/Al2O3 catalyst system. Egyptian Journal of Petroleum, 26(4), 885–893. DOI: 10.1016/j.ejpe.2015.03.009
  49. Yusuf, A.Z., John, Y.M., Aderemi, B.O., Patel, R., Mujtaba, I.M. (2019). Modelling, simulation and sensitivity analysis of naphtha catalytic reforming reactions. Computers and Chemical Engineering, 130, 106531. DOI: 10.1016/j.compchemeng.2019.106531

Last update:

No citation recorded.

Last update:

No citation recorded.