Department of Chemical Engineering, Collage of Engineering, University of Al-Nahrain, Al-Jadriyah, Baghdad, Iraq
BibTex Citation Data :
@article{BCREC16763, author = {Mohammed Abdulrazzaq Salim and Usama Akram Saed}, title = {Production of High-Octane Number Gasoline from Basra Low Octane-Number Gas Condensate and Ethanol over Modified Zn/ZSM5 Zeolite Catalyst}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {18}, number = {1}, year = {2023}, keywords = {Gas condensate to gasoline; ethanol; Zinc-modified Zsm-5; Aromatization; Octane number}, abstract = { Catalytic transformation of a low-octane number stable gas condensate to high-octane number gasoline (RON: research octane number) is an economically and strategically vital process. In this research, modifying ZSM5 zeolite (80 Si/Al ratio) by impregnation with 2% Zn (Zn/ZSM5) was carried out to increase the selectivity for isomerization and aromatization thereby enhance the octane number. The process was conducted by using stable gas condensate 85 vol% with 15 vol% ethanol in a fixed bed reactor. Zn/ZSM5 and ZSM5 were examined in a pilot scale under different conditions temperature 360-420 °C LHSV1.2-2 h − 1 , pressure 5 bar. Catalysts were characterized before and after Zn loading using Fourier Transform Infra Red (FT-IR), Brunauer-Emmett-Teller (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TEM), and N 2 -adsorption. The SEM, FESEM, and TEM have shown that no change in morphology and metal distribution. The XRD and FTIR characterizations revealed the modified catalysts retained their crystallinity after metal impregnation while N 2 -adsorption isotherm demonstrates no significant change in porosity. The results of Zn/ZSM5 display an optimum result at 420 °C, 1.2 h − 1 , 5 bar with enhancement of RON from 60.5 to 89 whereas ZSM5 shows RON enhancement from 60.5 to 82. Post Zn loading, PONA test has shown an increase for iso-paraffin from 45.4 to 47.4%, and aromatics from 10.8 to 14. The findings translate the effectiveness of using Zn on ZSM5 for gas condensate – gasoline transformation. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {59--70} doi = {10.9767/bcrec.16763}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/16763} }
Refworks Citation Data :
Catalytic transformation of a low-octane number stable gas condensate to high-octane number gasoline (RON: research octane number) is an economically and strategically vital process. In this research, modifying ZSM5 zeolite (80 Si/Al ratio) by impregnation with 2% Zn (Zn/ZSM5) was carried out to increase the selectivity for isomerization and aromatization thereby enhance the octane number. The process was conducted by using stable gas condensate 85 vol% with 15 vol% ethanol in a fixed bed reactor. Zn/ZSM5 and ZSM5 were examined in a pilot scale under different conditions temperature 360-420 °C LHSV1.2-2 h−1, pressure 5 bar. Catalysts were characterized before and after Zn loading using Fourier Transform Infra Red (FT-IR), Brunauer-Emmett-Teller (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TEM), and N2-adsorption. The SEM, FESEM, and TEM have shown that no change in morphology and metal distribution. The XRD and FTIR characterizations revealed the modified catalysts retained their crystallinity after metal impregnation while N2-adsorption isotherm demonstrates no significant change in porosity. The results of Zn/ZSM5 display an optimum result at 420 °C, 1.2 h−1, 5 bar with enhancement of RON from 60.5 to 89 whereas ZSM5 shows RON enhancement from 60.5 to 82. Post Zn loading, PONA test has shown an increase for iso-paraffin from 45.4 to 47.4%, and aromatics from 10.8 to 14. The findings translate the effectiveness of using Zn on ZSM5 for gas condensate – gasoline transformation. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th January 2024)