skip to main content

Performance of CdS/TNTAs Nanocomposite in Removing Ciprofloxacin and Hydrogen Production using Simultaneously Electrocoagulation-Photocatalysis Process

1Chemical Engineering Department, Universitas Indonesia, Indonesia

2Chemical Engineering Department, Universitas Indonesia / Petroleum Engineering Department, Universitas Trisakti, Indonesia

Received: 14 Nov 2022; Revised: 24 Dec 2022; Accepted: 25 Dec 2022; Available online: 26 Dec 2022; Published: 30 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study used CdS as a pair of TiO2 Nanotube Arrays (TNTAs), considering the position and width of the energy band gap, which is expected to increase photocatalyst performance. The nancomposite was synthesized using the successive ionic layer adsorption reaction (SILAR) method, with Cd(CH3COO)2 and Na2S as precursors. The CdS/TNTAs nanocomposite is expected to reduce the energy band gap to enable the visible and UV spectrum to activate the photocatalyst. Additionally, the formed heterojunction mechanism provides opportunities for the trajectories of electrons and holes to be farther apart and reduce the recombination rate. The degradation ability of CdS/TNTAs nanocomposite in the photocatalytic process was evaluated using samples of ciprofloxacin liquid waste as an antibiotic, which is quite challenging to decompose completely. The ability of the photocatalytic process to produce hydrogen gas was also observed and its performance synergized with the electrocoagulation process. The result showed that the use of CdS as a TNTAs partner in CdS/TNTAs nanocomposites affects increasing photocatalyst performance, both in degrading ciprofloxacin and producing hydrogen gas. Furthermore, the CdS/TNTAs nanocomposite increased the photocatalytic process’s ability to degrade ciprofloxacin and produce hydrogen from 8.5 to 20.5% and 6 to 23.5 mmol/m2 compared to using TNTAs alone. The processing capability is further enhanced when run in synergy with the electrocoagulation process where the removal of ciprofloxacin reaches 86.55%  and the hydrogen produced is 2.62×106 mmol/m2. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: CdS/TiNTAs; Ciprofloxacin Degradation; Electrocoagulation; Hydrogen Production; Photocatalysis
Funding: Universitas Indonesia under contract NKB-343/UN2.RST/HKP.05.00/2022

Article Metrics:

  1. Kraupner, N., Ebmeyer, S., Bengtsson-Palme, J., Fick, J., Kristiansson, E., Flach, C.-F., Larsson, D.J. (2018). Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms. Environment International, 116, 255-268. DOI: 10.1016/j.envint.2018.04.029
  2. Rodriguez-Narvaez, O.M., Peralta-Hernandez, J.M., Goonetilleke, A., Bandala, E.R. (2017). Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal, 323, 361-380. DOI: 10.1016/j.cej.2017.04.106
  3. Antonin, V.S., Santos, M.C., Garcia-Segura, S., Brillas, E. (2015). Electrochemical incineration of the antibiotic ciprofloxacin in sulfate medium and synthetic urine matrix. Water Research, 83, 31-41. DOI: 10.1016/j.watres.2015.05.066
  4. Melián, E.P., Díaz, O.G., Méndez, A.O., López, C.R., Suárez, M.N., Rodríguez, J.M.D., Navío, J.A., Hevia, D.F., Peña, J.P. (2013). Efficient and affordable hydrogen production by water photo-splitting using TiO2-based photocatalysts. International Journal of Hydrogen Energy, 38(5), 2144-2155. DOI: 10.1016/j.ijhydene.2012.12.005
  5. Al-Mamun, M., Kader, S., Islam, M., Khan, M. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248. DOI: 10.1016/j.ijhydene.2018.10.200
  6. Fajrina, N., Tahir, M. (2019). A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. International Journal of Hydrogen Energy, 44(2), 540-577. DOI: 10.1016/j.ijhydene.2018.10.200
  7. Lin, Y., Jiang, Z., Zhu, C., Hu, X., Zhu, H., Zhang, X., Fan, J., Lin, S.H. (2013). The optical absorption and hydrogen production by water splitting of (Si, Fe)-codoped anatase TiO2 photocatalyst. International Journal of Hydrogen Energy, 38(13), 5209-5214. DOI: 10.1016/j.ijhydene.2013.02.079
  8. Ratnawati, J.G., Dewi, E., Slamet, S. (2014). Effect of NaBF4 addition on the anodic synthesis of TiO2 nanotube arrays photocatalyst for production of hydrogen from glycerolwater solution. International Journal of Hydrogen Energy, 39(30), 16927-16935. DOI: 10.1016/j.ijhydene.2014.07.178
  9. Wang, W.-Y., Chen, B.-R. (2013). Characterization and photocatalytic activity of TiO2 nanotube films prepared by anodization. International Journal of Photoenergy, 2013, 348171. DOI: 10.1155/2013/348171
  10. Parvulescu, V., Ciobanu, M., Petcu, G. (2020). Immobilization of semiconductor photocatalysts. In Handbook of smart photocatalytic materials (pp. 103-140): Elsevier. DOI: 10.1016/B978-0-12-819051-7.00004-X
  11. Huang, F., Yan, A., Zhao, H. (2016). Influences of doping on photocatalytic properties of TiO2 photocatalyst. In Cao, W. (ed.), Semiconductor Photocatalysis—Materials, Mechanisms and Applications, p. 31-80, IntechOpen. DOI: 10.5772/63234
  12. Kumaravel, V., Mathew, S., Bartlett, J., Pillai, S.C. (2019). Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Applied Catalysis B: Environmental, 244, 1021-1064. DOI: 10.1016/j.apcatb.2018.11.080
  13. Wang, P., Xu, S., Wang, J., Liu, X. (2020). Photodeposition synthesis of CdS QDs-decorated TiO2 for efficient photocatalytic degradation of metronidazole under visible light. Journal of Materials Science: Materials in Electronics, 31(22), 19797-19808. DOI: 10.1007/s10854-020-04504-2
  14. Sharfan, N., Shobri, A., Anindria, F.A., Mauricio, R., Tafsili, M.A.B., Slamet, S. (2018). Treatment of batik industry waste with a combination of electrocoagulation and photocatalysis. International Journal of Technology. 9(5), 936-943. DOI: 10.14716/ijtech.v9i5.618
  15. Pelawi, L. F., Slamet, S., & Elysabeth, T. (2020). Combination of electrocoagulation and photocatalysis for hydrogen production and decolorization of tartrazine dyes using CuO-TiO2 nanotubes photocatalysts. AIP Conference Proceedings, 2223, 040001. DOI: 10.1063/5.0000953
  16. Muttaqin, R., Pratiwi, R., Dewi, E.L., Ibadurrohman, M. (2022). Degradation of methylene blue-ciprofloxacin and hydrogen production simultaneously using combination of electrocoagulation and photocatalytic process with Fe-TiNTAs. International Journal of Hydrogen Energy, 47(42), 18272-18284. DOI: 10.1016/j.ijhydene.2022.04.031
  17. Dholam, R., Patel, N., Adami, M., Miotello, A. (2009). Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2 composite thin films photocatalyst. International Journal of Hydrogen Energy, 34(13), 5337-5346. DOI: 10.1016/j.ijhydene.2009.05.011
  18. Ahmadzadeh, S., Asadipour, A., Pournamdari, M., Behnam, B., Rahimi, H.R., Dolatabadi, M. (2017). Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: optimization and modelling through response surface methodology. Process Safety and Environmental Protection, 109, 538-547. DOI: 10.1016/j.psep.2017.04.026
  19. Naje, A.S., Chelliapan, S., Zakaria, Z., Ajeel, M.A., Alaba, P.A. (2017). A review of electrocoagulation technology for the treatment of textile wastewater. Reviews in Chemical Engineering, 33(3), 263-292. DOI: 10.1515/revce-2016-0019
  20. Boroski, M., Rodrigues, A.C., Garcia, J.C., Sampaio, L.C., Nozaki, J., Hioka, N. (2009). Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries. Journal of Hazardous Haterials, 162(1), 448-454. DOI: 10.1016/j.jhazmat.2008.05.062
  21. Ates, H., Dizge, N., Yatmaz, H.C. (2017). Combined process of electrocoagulation and photocatalytic degradation for the treatment of olive washing wastewater. Water Science and Technology, 75(1), 141-154. DOI: 10.2166/wst.2016.498
  22. Afroz, K., Moniruddin, M., Bakranov, N., Kudaibergenov, S., Nuraje, N. (2018). A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. Journal of Materials Chemistry A, 6(44), 21696-21718. DOI: 10.1039/C8TA04165B
  23. Wang, J., Wang, Z., Qu, P., Xu, Q., Zheng, J., Jia, S., Chen, J., Zhu, Z. (2018). A 2D/1D TiO2 nanosheet/CdS nanorods heterostructure with enhanced photocatalytic water splitting performance for H2 evolution. International Journal of Hydrogen Energy, 43(15), 7388-7396. DOI: 10.1016/j.ijhydene.2018.02.191
  24. Momeni, M., Mozafari, A. (2016). The effect of number of SILAR cycles on morphological, optical and photo catalytic properties of cadmium sulfide–titania films. Journal of Materials Science: Materials in Electronics, 27(10), 10658-10666. DOI: 10.1007/s10854-016-5163-4
  25. Kalarivalappil, V., Hinder, S.J., Pillai, S.C., Kumar, V., Vijayan, B.K. (2018). Stability studies of CdS sensitized TiO2 nanotubes prepared using the SILAR method. Journal of Environmental Chemical Engineering, 6(1), 1404-1413. DOI: 10.1007/s10854-016-5163-4
  26. Meng, A., Zhu, B., Zhong, B., Zhang, L., Cheng, B. (2017). Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Applied Surface Science, 422, 518-527. DOI: 10.1016/j.apsusc.2017.06.028
  27. Hakizimana, J.N., Gourich, B., Chafi, M., Stiriba, Y., Vial, C., Drogui, P., Naja, J. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1-21. DOI: 10.1016/j.desal.2016.10.011
  28. Sahlin, S., Larsson, D., Ågerstrand, M. (2018). Ciprofloxacin. EQS data overview. Department of Environmental Science and Analytical Chemistry (ACES). ACES report(15)
  29. Wu, S., Hu, Y.H. (2021). A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics. Chemical Engineering Journal, 409, 127739. DOI: 10.1016/j.cej.2020.127739
  30. Wu, X., Zhang, Y., Wu, H., Guo, J., Wu, K., Zhang, L. (2021). Facile synthesis of multi-shelled AgI/ZnO composite as Z-scheme photocatalyst for efficient ciprofloxacin degradation and H2 production. Journal of Materials Science: Materials in Electronics, 32(22), 26241-26257. DOI: 10.1007/s10854-021-06844-z

Last update:

No citation recorded.

Last update:

No citation recorded.