skip to main content

Highly Efficient Catalytic Oxidative Desulfurization of Dibenzothiophene using Layered Double Hydroxide Modified Polyoxometalate Catalyst

1Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia

2Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia

3Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia

Received: 4 Nov 2022; Revised: 5 Dec 2022; Accepted: 5 Dec 2022; Available online: 7 Dec 2022; Published: 30 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Layered double hydroxide-modified polyoxometalate (ZnAl-PW) was prepared and used for the oxidative desulfurization of dibenzothiophene. XRD patterns of ZnAl-LDH and PW are still present in ZnAl-PW. The bands of ZnAl-PW in wavenumber 3276, 1637, 1363, 1050, 952, 887, and 667 cm-1. The typical surface of ZnAl-LDH and ZnAl-PW can be observed not smooth in different sized with irregular shapes. The average diameter distribution of ZnAl-LDH and ZnAl-PW is 14 nm and 47 nm, respectively. For dibenzothiophene with 500 ppm, conversion on ZnAl-LDH, PW, and ZnAl-PW was 94.71%, 95.88%, and 99.16%, respectively. Conversion of dibenzothiophene in line with the acidity of ZnAl-LDH, PW, and ZnAl-PW were 0.399, 1.635, and 3.023 mmol/gram, respectively. The most effective catalyst dosage for the desulfurization of dibenzothiophene on ZnAl-LDH, PW, and ZnAl-PW is 0.25 g. The unchanged dibenzothiophene concentration indicates a heterogeneous system. ZnAl-LDH, PW, and ZnAl-PW are truly heterogeneous catalysts. After 3 cycles of oxidative desulfurization, the percentage conversion of dibenzothiophene on ZnAl-LDH, PW, and ZnAl-PW were 77.42 %, 65.98%, and 86.38%, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: polyoxometalate; layered double hydroxide; oxidative desulfurization; dibenzothiophene
Funding: Universitas Sriwijaya under contract Hibah Profesi SIP DIPA-023.17.2.677515/2022

Article Metrics:

  1. Ribeiro, S.O., Almeida, P.L., Pires, J., de Castro, B., Balula, S.S. (2020). Polyoxometalate@Periodic mesoporous organosilicas as active materials for oxidative desulfurization of diesels. Microporous and Mesoporous Materials, 302, 110193. DOI: 10.1016/j.micromeso.2020.110193
  2. Jiang, W., Dong, L., Liu, W., Guo, T., Li, H., Zhang, M., Zhu, W., Li, H. (2017). Designing multifunctional SO3H-based polyoxometalate catalysts for oxidative desulfurization in acid deep eutectic solvents. RSC Advances, 7(87), 55318–55325. DOI: 10.1039/c7ra10125b
  3. Fraile, J.M., Gil, C., Mayoral, J.A., Muel, B., Roldán, L., Vispe, E., Calderón, S., Puente, F. (2016). Heterogeneous titanium catalysts for oxidation of dibenzothiophene in hydrocarbon solutions with hydrogen peroxide: On the road to oxidative desulfurization. Applied Catalysis B: Environmental, 180, 680–686. DOI: 10.1016/j.apcatb.2015.07.018
  4. Mu, T., Yang, M., Xing, J. (2021). Performance and characteristic of a haloalkaliphilic bio-desulfurizing system using Thioalkalivibrio verustus D301 for efficient removal of H2S. Biochemical Engineering Journal, 165, 107812. DOI: 10.1016/j.bej.2020.107812
  5. Huang, C., Zhao, Z., Ping, E., Zhang, L., Zhou, Y., Qin, L. (2021). Combination of coordinatively unsaturated metal sites and silver nano-particles in a Ni-based metal-organic framework for adsorptive desulfurization. Microporous and Mesoporous Materials, 323, 111241. DOI: 10.1016/j.micromeso.2021.111241
  6. Khan, N., Srivastava, V.C. (2022). Extractive desulfurization using ethylene glycol and glycerol-based deep eutectic solvents: engineering aspects and intensification using ultrasound. Chemical Engineering and Processing - Process Intensification, 180, 108973. DOI: 10.1016/j.cep.2022.108973
  7. Farghadani, M.H., Mahdavi, V. (2022). Novel synthesis of highly dispersed molybdenum oxide over nanorods cryptomelane octahedral manganese oxide molecular sieve (MoOx/nanorod-OMS-2) as a high performance catalyst for oxidative desulfurization process. Fuel Processing Technology, 236, 107415. DOI: 10.1016/j.fuproc.2022.107415
  8. Raeisi, A., Najafi Chermahini, A., Momeni, M.M. (2022). A novel photocatalytic and photoelectrocatalytic system for oxidative desulfurization of model fuel using BiVO4@HKUST-1 composite in powder and deposited on fluorine-doped tin oxide. Journal of Photochemistry and Photobiology A: Chemistry, 433, 114190. DOI: 10.1016/j.jphotochem.2022.114190
  9. Deng, C., Zhu, H., Huang, Y., Liu, H., Liu, P., Cui, P., Chao, Y., Liu, J., Wang, R., Wu, P., Zhu, W. (2022). High temperature oxidizing-resistant magnetic high entropy catalyst for efficient oxidative desulfurization. Catal. Today, 405-406, 66-74. DOI: 10.1016/j.cattod.2022.08.002
  10. Xun, S., Wu, C., Tang, L., Yuan, M., Chen, H., He, M., Zhu, W., Li, H. (2022). One-pot in-situ synthesis of coralloid supported VO2 catalyst for intensified aerobic oxidative desulfurization. Chin. J. Chem. Eng. In Press. DOI: 10.1016/j.cjche.2022.07.005
  11. Vallés-García, C., Santiago-Portillo, A., Álvaro, M., Navalón, S., García, H. (2020). MIL-101(Cr)-NO2 as efficient catalyst for the aerobic oxidation of thiophenols and the oxidative desulfurization of dibenzothiophenes. Applied Catalysis A: General, 590, 117340. DOI: 10.1016/j.apcata.2019.117340
  12. Elena Manríquez-Ramírez, M., Valdez, M.T., Castro, L. v., Flores, M.E., Ortiz-Islas, E. (2022). Application of CeO2-V2O5 catalysts in the oxidative desulfurization of 4,6-dimethyl dibenzothiophene as a model reaction to remove sulfur from fuels. Materials Research Bulletin, 153, 111864. DOI: 10.1016/j.materresbull.2022.111864
  13. Julião, D., Gomes, A.C., Cunha-Silva, L., Pillinger, M., Gonçalves, I.S., Balula, S.S. (2022). Dichloro and dimethyl dioxomolybdenum(VI)-bipyridine complexes as catalysts for oxidative desulfurization of dibenzothiophene derivatives under extractive conditions. Journal of Organometallic Chemistry, 967, 122336. DOI: 10.1016/j.jorganchem.2022.122336
  14. Liu, Y., Zuo, P., Wang, F., Lv, Y., Wang, R., Jiao, W. (2020). Extraction combined oxidation desulfurization of dibenzothiophene using polyoxometalate-supported magnetic chitosan microspheres. Journal of the Taiwan Institute of Chemical Engineers, 117, 112–122. DOI: 10.1016/j.jtice.2020.12.003
  15. Song, Y., Bai, J., Jiang, S., Yang, H., Yang, L., Wei, D., Bai, L., Wang, W., Liang, Y., Chen, H. (2021). Co-Fe-Mo mixed metal oxides derived from layered double hydroxides for deep aerobic oxidative desulfurization. Fuel, 306, 121751. DOI: 10.1016/j.fuel.2021.121751
  16. Yu, Q., Li, C., Ma, D., Zhao, J., Liu, X., Liang, C., Zhu, Y., Zhang, Z., Yang, K. (2022). Layered double hydroxides-based materials as novel catalysts for gaseous VOCs abatement: Recent advances and mechanisms. Coordination Chemistry Reviews, 471, 214738. DOI: 10.1016/j.ccr.2022.214738
  17. Abdel-Hady, E.E., Mahmoud, R., Hafez, S.H.M., Mohamed, H.F.M. (2022). Hierarchical ternary ZnCoFe layered double hydroxide as efficient adsorbent and catalyst for methanol electrooxidation. Journal of Materials Research and Technology, 17, 1922–1941. DOI: 10.1016/j.jmrt.2022.01.042
  18. Fang, X., Chen, C., Jia, H., Li, Y., Liu, J., Wang, Y., Song, Y., Du, T., Liu, L. (2021). Progress in Adsorption-Enhanced Hydrogenation of CO2 on Layered Double Hydroxide (LDH) Derived Catalysts. Journal of Industrial and Engineering Chemistry, 95, 16–27. DOI: 10.1016/j.jiec.2020.12.027
  19. Lv, H., Rao, H., Liu, Z., Zhou, Z., Zhao, Y., Wei, H., Chen, Z. (2022). NiAl layered double hydroxides with enhanced interlayer spacing via ion-exchange as ultra-high performance supercapacitors electrode materials. Journal of Energy Storage, 52, 104940. DOI: 10.1016/j.est.2022.104940
  20. van Everbroeck, T., Wu, J., Arenas-Esteban, D., Ciocarlan, R.-G., Mertens, M., Bals, S., Dujardin, C., Granger, P., Seftel, E.M., Cool, P. (2022). ZnAl layered double hydroxide based catalysts (with Cu, Mn, Ti) used as noble metal-free three-way catalysts. Applied Clay Science, 217(December 2021), 106390. DOI: 10.1016/j.clay.2021.106390
  21. Song, Y., Fang, W., Liu, C., Sun, Z., Li, F., Xu, L. (2020). Effect of mixed Mo/W polyoxometalate modification on photoelectrocatalytic activity of CdS nanocrystals for arsenic(III) oxidation. Journal of Physics and Chemistry of Solids, 141, 109395. DOI: 10.1016/j.jpcs.2020.109395
  22. He, R., Xue, K., Wang, J., Yan, Y., Peng, Y., Yang, T., Hu, Y., Wang, W. (2020). Nitrogen-deficient g-C3Nx/POMs porous nanosheets with P–N heterojunctions capable of the efficient photocatalytic degradation of ciprofloxacin. Chemosphere, 259, 127465. DOI: 10.1016/j.chemosphere.2020.127465
  23. Xing, F., Zeng, R., Cheng, C., Liu, Q., Huang, C. (2022). POM-incorporated ZnIn2S4 Z-scheme dual-functional photocatalysts for cooperative benzyl alcohol oxidation and H2 evolution in aqueous solution. Applied Catalysis B: Environmental, 306, 121087. DOI: 10.1016/j.apcatb.2022.121087
  24. Tian, Y., Chang, Z.H., Zhang, Y.C., Wang, X.L., Chen, Y. zhen, Liu, Q. qian, Yu, L. (2021). Two Anderson-type POM-based metal-organic complexes as multifunctional materials for electrocatalytic sensing and zinc-ion batteries. Polyhedron, 204, 115245. DOI: 10.1016/j.poly.2021.115245
  25. Taghiyar, H., Yadollahi, B. (2020). Keggin polyoxometalates encapsulated in molybdenum-iron-type Keplerate nanoball as efficient and cost-effective catalysts in the oxidative desulfurization of sulfides. Science of the Total Environment, 708, 134860. DOI: 10.1016/j.scitotenv.2019.134860
  26. Liu, Y., Zuo, P., Wang, R., Liu, Y., Jiao, W. (2020). Covalent immobilization of Dawson polyoxometalates on hairy particles and its catalytic properties for the oxidation desulfurization of tetrahydrothiophene. Journal of Cleaner Production, 274, 122774. DOI: 10.1016/j.jclepro.2020.122774
  27. Huang, X., Liu, X. (2020). Morphology control of highly efficient visible-light driven carbon-doped POM photocatalysts. Applied Surface Science, 505, 144527. DOI: 10.1016/j.apsusc.2019.144527
  28. Zhang, H., Li, M., Liu, Z., Zhang, X., Du, C. (2022). Two Keggin-type polyoxometalates used as adsorbents with high efficiency and selectivity toward antibiotics and heavy metals. Journal of Molecular Structure, 1267, 133604. DOI: 10.1016/j.molstruc.2022.133604
  29. Cruz, H., Pinto, A.L., Lima, J.C., Branco, L.C., Gago, S. (2020). Application of polyoxometalate-ionic liquids (POM-ILs) in dye-sensitized solar cells (DSSCs). Materials Letters: X, 6, 100033. DOI: 10.1016/j.mlblux.2019.100033
  30. Xu, M., Bi, B., Xu, B., Sun, Z., Xu, L. (2018). Polyoxometalate-intercalated ZnAlFe-layered double hydroxides for adsorbing removal and photocatalytic degradation of cationic dye. Applied Clay Science, 157, 86–91. DOI: 10.1016/j.clay.2018.02.023
  31. Wang, Z., Wang, A., Yang, L., Fan, G., Li, F. (2022). Supported Ru nanocatalyst over phosphotungstate intercalated Zn-Al layered double hydroxide derived mixed metal oxides for efficient hydrodeoxygenation of guaiacol. Molecular Catalysis, 528, 112503. DOI: 10.1016/j.mcat.2022.112503
  32. Wu, Y., Liu, X., Lei, Y., Qiu, Y., Wang, M., Wang, H. (2017). Synthesis and characterization of 12-tungstophosphoric acid intercalated layered double hydroxides and their application as esterification catalysts for deacidification of crude oil. Applied Clay Science, 150, 34–41. DOI: 10.1016/j.clay.2017.09.007
  33. Badaruddin, M., Ahmad, N., Fitri, E.S., Lesbani, A., Mohadi, R. (2022). Hydrochar and Humic Acid as Template of ZnAl Layered Double Hydroxide for Adsorption of Phenol. Science and Technology Indonesia, 7(4), 492-499. DOI: 10.26554/sti.2022.7.4.492-499
  34. Vasiljević, B.N., Obradović, M., Bajuk-Bogdanović, D., Milojević-Rakić, M., Jovanović, Z., Gavrilov, N., Holclajtner-Antunović, I. (2019). In situ synthesis of potassium tungstophosphate supported on BEA zeolite and perspective application for pesticide removal. Journal of Environmental Sciences (China), 81, 136–147. DOI: 10.1016/j.jes.2019.01.018
  35. Dinh, T.D., Zhang, D., Tuan, V.N. (2020). High iodine adsorption performances under off-gas conditions by bismuth-modified ZnAl-LDH layered double hydroxide. RSC Advances, 10(24), 14360–14367. DOI: 10.1039/d0ra00501k
  36. Utami, H.P., Ahmad, N., Zahara, Z.A., Lesbani, A., Mohadi, R. (2022). Green Synthesis of Nickel Aluminum Layered Double Hydroxide using Chitosan as Template for Adsorption of Phenol. Science and Technology Indonesia, 7(4), 530-535. DOI: 10.26554/sti.2022.7.4.530-535
  37. Flihh, S.M., Ammar, S.H. (2022). Zeolitic imidazolate framework grafted by cobalt tungstate as an efficient photocatalyst for photocatalytic oxidative desulfurization of dibenzothiophene. Materials Science in Semiconductor Processing, 149, 106894. DOI: 10.1016/j.mssp.2022.106894
  38. Trisunaryanti, W., Sumbogo, S.D., Novianti, S.A., Fatmawati, D.A., Ulfa, M., Nikmah, Y.L. (2021). ZnO-activated carbon blended as a catalyst for oxidative desulfurization of dibenzothiophene. Bulletin of Chemical Reaction Engineering & Catalysis, 16(4), 881–887. DOI: 10.9767/bcrec.16.4.11797.881-887
  39. Ahmad, N., Wijaya, A., Salasia Fitri, E., Suryani Arsyad, F., Mohadi, R., Lesbani, A. (2022). Catalytic Oxidative Desulfurization of Dibenzothiophene by Composites Based Ni/Al-Oxide. Science and Technology Indonesia, 7(3), 385-391. DOI: 10.26554/sti.2022.7.3.385-391
  40. Ja’fari, M., Ebrahimi, S.L., Khosravi-Nikou, M.R. (2018). Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: A critical review. Ultrason Sonochem, 40, 955–968. DOI: 10.1016/j.ultsonch.2017.09.002
  41. Sadare, O.O., Ayeni, A.O., Daramola, M.O. (2022). Evaluation of adsorption and kinetics of neem leaf powder (Azadirachta indica) as a bio-sorbent for desulfurization of dibenzothiophene (DBT) from synthetic diesel. Journal of Saudi Chemical Society, 26(2), 101433. DOI: 10.1016/j.jscs.2022.101433
  42. Akbari Moghadam, S., Mazloom, G., Akbari, A., Banisharif, F. (2022). Supported vanadium oxide catalyst over HY-zeolite-alumina composite fabricated by extrusion for oxidative desulfurization of dibenzothiophene. Molecular Catalysis, 532, 112731. DOI: 10.1016/j.mcat.2022.112731
  43. Li, X., Qi, H., Zhou, W., Xu, W., Sun, Y. (2019). Efficient catalytic performance of tetra-alkyl orthotitanates for the oxidative desulfurization of dibenzothiophene at room temperature. Comptes Rendus Chimie, 22(4), 321–326. DOI: 10.1016/j.crci.2018.11.008
  44. Sikarwar, P., Kumar, U.K.A., Gosu, V., Subbaramaiah, V. (2018). Catalytic oxidative desulfurization of DBT using green catalyst (Mo/MCM-41) derived from coal fly ash. Journal of Environmental Chemical Engineering, 6(2), 1736–1744. DOI: 10.1016/j.jece.2018.02.021
  45. Wei, S., He, H., Cheng, Y., Yang, C., Zeng, G., Kang, L., Qian, H., Zhu, C. (2017). Preparation, characterization, and catalytic performances of cobalt catalysts supported on KIT-6 silicas in oxidative desulfurization of dibenzothiophene. Fuel, 200, 11–21. DOI: 10.1016/j.fuel.2017.03.052
  46. Xie, D., He, Q., Su, Y., Wang, T., Xu, R., Hu, B. (2015). Oxidative desulfurization of dibenzothiophene catalyzed by peroxotungstate on functionalized MCM-41 materials using hydrogen peroxide as oxidant. Cuihua Xuebao/Chinese Journal of Catalysis, 36(8), 1205–1213. DOI: 10.1016/S1872-2067(15)60897-X
  47. Lesbani, A., Agnes, A., Saragih, R.O., Verawaty, M., Mohadi, R., Zulkifli, H. (2015). Facile oxidative desulfurisation of benzothiophene using polyoxometalate H4[α-SiW12O40]/Zr catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 10(2), 185–191. DOI: 10.9767/bcrec.10.2.7734.185-191
  48. Akopyan, A.v., Plotnikov, D.A., Polikarpova, P.D., Kedalo, A.A., Egazar’yants, S.v., Anisimov, A.v., Karakhanov, E.A. (2019). Deep Purification of Vacuum Gas Oil by the Method of Oxidative Desulfurization. Petroleum Chemistry, 59(9), 975–978. DOI: 10.1134/S0965544119090019
  49. Kumar, S., Srivastava, V.C., Badoni, R.P. (2012). Oxidative desulfurization by chromium promoted sulfated zirconia. Fuel Processing Technology, 93(1), 18–25. DOI: 10.1016/j.fuproc.2011.08.017
  50. Qiu, L., Cheng, Y., Yang, C., Zeng, G., Long, Z., Wei, S., Zhao, K., Luo, L. (2016). Oxidative desulfurization of dibenzothiophene using a catalyst of molybdenum supported on modified medicinal stone. RSC Advances, 6(21), 17036–17045. DOI: 10.1039/c5ra23077b
  51. Cao, Y., Wang, H., Ding, R., Wang, L., Liu, Z., Lv, B. (2020). Highly efficient oxidative desulfurization of dibenzothiophene using Ni modified MoO3 catalyst. Applied Catalysis A: General, 589, 117308. DOI: 10.1016/j.apcata.2019.117308
  52. Polikarpova, P., Akopyan, A., Shlenova, A., Anisimov, A. (2020). New mesoporous catalysts with Brønsted acid sites for deep oxidative desulfurization of model fuels. Catalysis Communications, 146, 106123. DOI: 10.1016/j.catcom.2020.106123
  53. Jiang, W., Zheng, D., Xun, S., Qin, Y., Lu, Q., Zhu, W., Li, H. (2017). Polyoxometalate-based ionic liquid supported on graphite carbon induced solvent-free ultra-deep oxidative desulfurization of model fuels. Fuel, 190, 1–9. DOI: 10.1016/j.fuel.2016.11.024
  54. Ribeiro, S.O., Granadeiro, C.M., Almeida, P.L., Pires, J., Capel-Sanchez, M.C., Campos-Martin, J.M., Gago, S., de Castro, B., Balula, S.S. (2019). Oxidative desulfurization strategies using Keggin-type polyoxometalate catalysts: Biphasic versus solvent-free systems. Catalysis Today, 333, 226–236. DOI: 10.1016/j.cattod.2018.10.046

Last update:

No citation recorded.

Last update:

No citation recorded.