skip to main content

Iron-Manganese Bimetallic-Organic Framework as A Photocatalyst for Degradation of Rhodamine B Organic Dye Under Visible Light

1Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City , Viet Nam

2Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam

3Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Viet Nam

4 Nanomaterial Laboratory, An Giang University, 18 Ung Van Khiem St., Dong Xuyen Dist, Long Xuyen City, An Giang Province , Viet Nam

5 Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam

View all affiliations
Received: 18 Jul 2021; Revised: 29 Sep 2021; Accepted: 30 Sep 2021; Available online: 2 Oct 2021; Published: 20 Dec 2021.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In recent years, there have been many research works on use of different methods to treat textile dyeing wastewater such as mechanical, biological and chemical methods (using oxidizing agents, such as: H2O2, O3, and H2O2/O3). However, some traditional textile dyeing wastewater treatment methods such as mechanical and biological methods have limitations in treating these pollutants thoroughly. To enhance the treatment efficiency, the use of photocatalysts combination with strong oxidizing agents, such as H2O2, has been extensively developed in recent years. In this study, the iron-centred bimetallic organic framework Fe-MOF has been synthesized by partial replacement of Fe3+ ions with Mn metal ions by solvent-thermal method. The analytical methods used to evaluate the structural characterization of the as-synthesized materials including Scanning Electron Microscope (SEM), Brunaurer-Emmett-Teller (BET), X-ray Diffraction (XRD), Fourier Transform Infra Red (FT-IR), and UV-Vis Diffuse Reflectance Spectroscopy (DRS). The experiments on the decomposition of organic pigment Rhodamine B were performed under varying conditions of pH, catalyst mass and RhB colorant concentration. Experiments with different electron capturers indicate that h+ plays a major role in the photochemical degradation of RhB. The stability and durability of the 0.1 Mn/Fe-MOF catalyst were evaluated through the leaching and recycle experiments, showing that the RhB degradation efficiency of the photocatalyst decreased modestly after five repetitions. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Bimetallic-organic framework; Photocatalysis degradation; Rhodamine B
Funding: Nguyen Tat Thanh University

Article Metrics:

  1. Abednatanzi, S., Gohari Derakhshandeh, P., Depauw, H., Coudert, F.X., Vrielinck, H., Van Der Voort, P., Leus, K. (2019). Mixed-metal metal-organic frameworks. Chemical Society Reviews, 48(9), 2535–2565. DOI: 10.1039/c8cs00337h
  2. Alwash, A.H., Abdullah, A.Z., Ismail, N. (2012). Zeolite Y encapsulated with Fe-TiO2 for ultrasound-assisted degradation of amaranth dye in water. Journal of Hazardous Materials, 233–234, 184–193. DOI: 10.1016/j.jhazmat.2012.07.021
  3. Calleja, G., Sanz, R., Orcajo, G., Briones, D., Leo, P., Martínez, F. (2014). Copper-based MOF-74 material as effective acid catalyst in Friedel–Crafts acylation of anisole. Catalysis Today, 227, 130–137. DOI: 10.1016/j.cattod.2013.11.062
  4. Chen, L., Wang, H.F., Li, C., Xu, Q. (2020). Bimetallic metal-organic frameworks and their derivatives. Chemical Science, 11(21), 5369–5403. DOI: 10.1039/d0sc01432j
  5. Choi, S., Cha, W., Ji, H., Kim, D., Lee, H. J., Oh, M. (2016). Synthesis of hybrid metal-organic frameworks of {Fe: XMyM′1-x-Y}-MIL-88B and the use of anions to control their structural features. Nanoscale, 8(37), 16743–16751. DOI: 10.1039/c6nr05463c
  6. Gao, Y., Li, S., Li, Y., Yao, L., Zhang, H. (2017). Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 202, 165–174. DOI: 10.1016/j.apcatb.2016.09.005
  7. Gholizadeh Khasevani, S., Gholami, M.R. (2019). Evaluation of the reaction mechanism for photocatalytic degradation of organic pollutants with MIL-88A/BiOI structure under visible light irradiation. Research on Chemical Intermediates, 45(3), 1341–1356. DOI: 10.1007/s11164-018-3681-9
  8. Gu, Y., Xie, D., Wang, Y., Qin, W., Zhang, H., Wang, G., Zhang, Y., Zhao, H. (2019). Facile fabrication of composition-tunable Fe/Mg bimetal-organic frameworks for exceptional arsenate removal. Chemical Engineering Journal, 357, 579–588. DOI: 10.1016/j.cej.2018.09.174
  9. Haque, E., Lee, J.E., Jang, I.T., Hwang, Y.K., Chang, J.S., Jegal, J., Jhung, S.H. (2010). Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. Journal of Hazardous Materials, 181(1–3), 535–542. DOI: 10.1016/j.jhazmat.2010.05.047
  10. Hong, D.Y., Hwang, Y.K., Serre, C., Férey, G., Chang, J.S. (2009). Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis. Advanced Functional Materials, 19(10), 1537–1552. DOI: 10.1002/adfm.200801130
  11. Khan, N.A., Jhung, S.H. (2013). Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel. Journal of Hazardous Materials, 260, 1050–1056. DOI: 10.1016/j.jhazmat.2013.06.076
  12. Khan, N.A., Jhung, S.H. (2015). Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coordination Chemistry Reviews, 285, 11–23. DOI: 10.1016/j.ccr.2014.10.008
  13. Koh, K., Wong-Foy, A.G., Matzger, A.J. (2009). A porous coordination copolymer with over 5000 m 2/g BET surface area. Journal of the American Chemical Society, 131(12), 4184–4185. DOI: 10.1021/ja809985t
  14. Kuppler, R.J., Timmons, D.J., Fang, Q.R., Li, J.R., Makal, T.A., Young, M.D., Yuan, D., Zhao, D., Zhuang, W., Zhou, H.C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253(23–24), 3042–3066. DOI: 10.1016/j.ccr.2009.05.019
  15. Lebedev, O.I., Millange, F., Serre, C., Van Tendeloo, G., Férey, G. (2005). First direct imaging of giant pores of the metal-organic framework MIL-101. Chemistry of Materials, 17(26), 6525–6527. DOI: 10.1021/cm051870o
  16. Merouani, S., Hamdaoui, O., Saoudi, F., Chiha, M. (2010). Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives. Chemical Engineering Journal, 158(3), 550–557. DOI: 10.1016/j.cej.2010.01.048
  17. Nguyen, H.T.T., Dinh, V.P., Phan, Q.A.N., Tran, V.A., Doan, V.D., Lee, T., Nguyen, T.D. (2020). Bimetallic Al/Fe Metal-Organic Framework for highly efficient photo-Fenton degradation of rhodamine B under visible light irradiation. Materials Letters, 279, 128482. DOI: 10.1016/j.matlet.2020.128482
  18. Nguyen, L.T.L., Nguyen, C.V., Dang, G.H., Le, K.K.A., Phan, N.T.S. (2011). Towards applications of metal-organic frameworks in catalysis: Friedel-Crafts acylation reaction over IRMOF-8 as an efficient heterogeneous catalyst. Journal of Molecular Catalysis A: Chemical, 349(1–2), 28–35. DOI: 10.1016/j.molcata.2011.08.011
  19. Nguyen, V.H., Nguyen, T.D., Bach, L.G., Hoang, T., Bui, Q.T.P., Tran, L.D., Nguyen, C.V., Vo, D.-V.N., Do, S.T. (2018). Effective Photocatalytic Activity of Mixed Ni/Fe-Base Metal-Organic Framework under a Compact Fluorescent Daylight Lamp. Catalysts, 8(11), 487. DOI: 10.3390/catal8110487
  20. Pham, M.H., Vuong, G.T., Vu, A.T., Do, T.O. (2011). Novel route to size-controlled Fe-MIL-88B-NH 2 metal-organic framework nanocrystals. Langmuir, 27(24), 15261–15267. DOI: 10.1021/la203570h
  21. Qasem, N.A.A., Ben-Mansour, R., Habib, M.A. (2018). An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Applied Energy, 210, 317–326. DOI: 10.1016/j.apenergy.2017.11.011
  22. Tang, J., Wang, J. (2020). Iron-copper bimetallic metal-organic frameworks for efficient Fenton-like degradation of sulfamethoxazole under mild conditions. Chemosphere, 241, 125002. DOI: 10.1016/j.chemosphere.2019.125002
  23. Qu, L.L., Wang, J., Xu, T.Y., Chen, Q.Y., Chen, J.H., Shi, C.J. (2018). Iron(III)-based metal-organic frameworks as oxygen-evolving photocatalysts for water oxidation. Sustainable Energy and Fuels, 2(9), 2109–2114. DOI: 10.1039/c8se00311d
  24. Sun, Q., Liu, M., Li, K., Han, Y., Zuo, Y., Chai, F., Song, C., Zhang, G., Guo, X. (2017). Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorganic Chemistry Frontiers, 4(1), 144–153. DOI: 10.1039/C6QI00441E
  25. Rahmani, E., Rahmani, M. (2017). Alkylation of benzene over Fe-based metal organic frameworks (MOFs) at low temperature condition. Microporous and Mesoporous Materials, 249, 118–127. DOI: 10.1016/j.micromeso.2017.04.058
  26. Rowsell, J.L.C., Yaghi, O.M. (2004). Metal-organic frameworks: A new class of porous materials. Microporous and Mesoporous Materials, 73(1–2), 3–14. DOI: 10.1016/j.micromeso.2004.03.034
  27. Rowsell, J.L.C., Yaghi, O.M. (2005). Strategies for hydrogen storage in metal-organic frameworks. Angewandte Chemie - International Edition, 44(30), 4670–4679. DOI: 10.1002/anie.200462786
  28. Saleh, R., Djaja, N.F. (2014). UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices and Microstructures, 74, 217–233. DOI: 10.1016/j.spmi.2014.06.013
  29. Su, S., Guo, W., Leng, Y., Yi, C., Ma, Z. (2013). Heterogeneous activation of Oxone by CoxFe3-xO4 nanocatalysts for degradation of rhodamine B. Journal of Hazardous Materials, 244–245, 736–742. DOI: 10.1016/j.jhazmat.2012.11.005
  30. Geng, N., Chen, W., Xu, H., Ding, M., Lin, T., Wu, Q., Zhang, L. (2021). Insights into the novel application of Fe-MOFs in ultrasound-assisted heterogeneous Fenton system: Efficiency, kinetics and mechanism. Ultrasonics Sonochemistry, 72, 105411. DOI: 10.1016/j.ultsonch.2020.105411
  31. Wang, D., Albero, J., García, H., Li, Z. (2017). Visible-light-induced tandem reaction of o-aminothiophenols and alcohols to benzothiazoles over Fe-based MOFs: Influence of the structure elucidated by transient absorption spectroscopy. Journal of Catalysis, 349, 156–162. DOI: 10.1016/j.jcat.2017.01.014
  32. Wang, D., Li, Z. (2017). Iron-based metal–organic frameworks (MOFs) for visible-light-induced photocatalysis. Research on Chemical Intermediates, 43(9), 5169–5186. DOI: 10.1007/s11164-017-3042-0
  33. Wang, J., Zhang, M., Li, S., Liu, R., Li, Z. (2020). Metal-organic frameworks-derived hollow-structured iron-cobalt bimetallic phosphide electrocatalysts for efficient oxygen evolution reaction. Journal of Alloys and Compounds, 821, 153463. DOI: 10.1016/j.jallcom.2019.153463
  34. Wang, S., Yang, Q., Zhong, C. (2008). Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: A computational study. Separation and Purification Technology, 60(1), 30–35. DOI: 10.1016/j.seppur.2007.07.050
  35. Wu, Q., Siddique, M.S., Yu, W. (2021). Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: Kinetics and mechanistic studies. Journal of Hazardous Materials, 401, 123261. DOI: 10.1016/j.jhazmat.2020.123261
  36. Zhao, Y., Wang, H.L., Qi, H.P., Zhao, D.Y., Wang, X.K. (2020). Facile synthesis of low crystalline BiOCl-based thermally-responsive photocatalyst with enhanced catalytic performance for photodegrading rhodamine B solution. Journal of Alloys and Compounds, 819, 153042. DOI: 10.1016/j.jallcom.2019.153042

Last update:

No citation recorded.

Last update:

No citation recorded.