skip to main content

Simultaneous Photocatalytic Esterification and Addition Reaction of Fatty Acids in Kemiri Sunan (Reutealis trisperma sp.) Oil over CuO/TiO2 Catalyst - A Novel Approach

Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia

Received: 8 Jul 2021; Revised: 29 Aug 2021; Accepted: 4 Sep 2021; Available online: 6 Sep 2021; Published: 20 Dec 2021.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

A novel approach, namely photocatalytic esterification and addition reaction of unsaturated fatty acids using CuO/TiO2 catalyst has been investigated in kemiri sunan oil. The objectives of this study are to reduce the free fatty acid (FFA) content by using catalyst CuO/TiO2, characterization of the catalyst  and the operation condition of reaction. The CuO/TiO2 catalyst was synthesized by the impregnation of TiO2 P25 powder with copper nitrate solution as a precursor and followed by calcination. The field emission scanning electron microscopy (FESEM), Energy Dispersive X-ray (EDX), X-ray Diffraction (XRD), and Transmission electron microscopes (TEM) result showed that copper oxide was highly dispersed on the TiO2 surface. The X-ray Photoelectron Spectroscopy (XPS) result showed that Cu is in the state of CuO (Cu2+), while Ti is in Ti4+ ( TiO2). The bandgap energy of CuO/TiO2 was smaller than TiO2 P25. It was  found that the reactions conducted in the presence of CuO/TiO2 in a photoreactor under UV irradiation can  perform esterification and addition reaction of the FFA,  simultaneously. The optimum reduction of the FFA was under condition of 4% loading CuO/TiO2, 4 hours reaction time, 30:1 (mole/mole) methanol to oil ratio, 5% (w/w) catalyst amount. The conversion of  FFA was at around 59%. The Gas Chromatography—Mass Spectrometry (GC-MS) results showed that the addition reaction of -eleostearic acid simultaneously occured at 100% conversion. Although the photocatalyst selectivity in FFA reduction was relatively  low, but double bond reduction of -eleostearic acid (C18:3) was very high. The reduction of multiple double bond is considered as positive poin to improve the oxidative stability of the product. The simultaneous esterification and addition reactions mechanism has been proposed. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: addition reaction; esterification; kemiri sunan oil; simultaneous photocatalytic esterification; CuO/TiO2
Funding: Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia under contract Hibah Penelitian Disertasi Doktor (PDD) 2019

Article Metrics:

  1. Holilah, H., Prasetyoko, D., Oetami, T.P., Santosa, E.B., Zein, Y.M., Bahruji, H., Fansuri, H., Ediati, R., Juwari, J. (2015).The potential of Reutealis trisperma seed as a new non-edible source for biodiesel production. Biomass Conversion and Biorefinery, 5(4), 347–353. DOI: 10.1007/s13399-014-0150-6
  2. Kumar, K.R., Chandrika, K., Prasanna, K., Gowda, B. (2015). Biodiesel production and characterization from non-edible oil tree species Aleurites trisperma Blanco. Biomass Conversion and Biorefinery, 5(3), 287–294. DOI: 10.1007/s13399-014-0152-4
  3. Jin, Y., Tian, S., Guo, J., Ren, X., Li, X., Gao, S. (2016). Synthesis, characterization and exploratory application of anionic surfactant fatty acid methyl ester sulfonate from waste cooking oil. Journal of Surfactants and Detergents, 19(3), 467–475. DOI: 10.1007/s11743-016-1813-z
  4. Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50(1), 14–34. DOI: 10.1016/j.enconman.2008.09.001
  5. Manique, M.C., Silva, A.P., Alves, A.K., Bergmann, C.P. (2016). Application of hydrothermally produced TiO2 nanotubes in photocatalytic esterification of oleic acid. Materials Science and Engineering: B, 206, 17–21. DOI: 10.1016/j.mseb.2016.01.001
  6. Canakci, M., Van Gerpen, J. (2001). Biodiesel production from oils and fats with high free fatty acids. Transactions of the ASAE, 44(6), 1429. DOI: 10.13031/2013.7010
  7. Dorado, M.P., Ballesteros, E., López, F.J., Mittelbach, M. (2004). Optimization of alkali-catalyzed transesterification of Brassica C arinata oil for biodiesel production. Energy & Fuels, 18(1), 77–83. DOI: 10.1021/ef0340110
  8. Dupont, J., Suarez, P.A., Meneghetti, M.R., Meneghetti, S.M. (2009). Catalytic production of biodiesel and diesel-like hydrocarbons from triglycerides. Energy & Environmental Science, 2(12), 1258–1265. DOI: 10.1039/B910806H
  9. Vyas, A.P., Verma, J.L., Subrahmanyam, N. (2010). A review on FAME production processes. Fuel, 89(1), 1–9. DOI: 10.1016/j.fuel.2009.08.014
  10. Martín, C., Moure, A., Martín, G., Carrillo, E., Domínguez, H., Parajo, J.C. (2010). Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass and Bioenergy, 34(4), 533–538. DOI: 10.1016/j.biombioe.2009.12.019
  11. Silitonga, A., Mahlia, T., Kusumo, F., Dharma, S., Sebayang, A., Sembiring, R., Shamsuddin, A. (2019). Intensification of Reutealis trisperma biodiesel production using infrared radiation: Simulation, optimisation and validation. Renewable Energy, 133, 520–527. DOI: 10.1016/j.renene.2018.10.023
  12. Silitonga, A.S., Mahlia, T.M.I., Ong, H.C., Riayatsyah, T.M.I., Kusumo, F., Ibrahim, H., Dharma, S., Gumilang, D. (2017). A comparative study of biodiesel production methods for Reutealis trisperma biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(20), 2006–2014. DOI: 10.1080/15567036.2017.1399174
  13. Chuah, L.F., Klemeš, J.J., Yusup, S., Bokhari, A., Akbar, M.M. (2017). A review of cleaner intensification technologies in biodiesel production. Journal of Cleaner Production, 146, 181–193. DOI: 10.1016/j.jclepro.2016.05.017
  14. Zhang, Y., Dube, M., McLean, D., Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89(1), 1–16. DOI: 10.1016/S0960-8524(03)00040-3
  15. Marchetti, J., Errazu, A. (2008). Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass and Bioenergy, 32(9), 892–895. DOI: 10.1016/j.biombioe.2008.01.001
  16. Al-Sakkari, E.G., Abdeldayem, O.M., El-Sheltawy, S., Abadir, M.F., Soliman, A., Rene, E.R., Ismail, I. (2020). Esterification of high FFA content waste cooking oil through different techniques including the utilization of cement kiln dust as a heterogeneous catalyst: A comparative study. Fuel, 279, 118519. DOI: 10.1016/j.fuel.2020.118519
  17. Corro, G., Pal, U., Tellez, N. (2013). Biodiesel production from Jatropha curcas crude oil using ZnO/SiO2 photocatalyst for free fatty acids esterification. Applied Catalysis B: Environmental, 129, 39–47. DOI: 10.1016/j.apcatb.2012.09.004
  18. Corro, G., Sánchez, N., Pal, U., Cebada, S., Fierro, J.L.G. (2017). Solar-irradiation driven biodiesel production using Cr/SiO2 photocatalyst exploiting cooperative interaction between Cr6+ and Cr3+ moieties. Applied Catalysis B: Environmental, 203, 43–52. DOI: 10.1016/j.apcatb.2016.10.005
  19. Verma, P., Kaur, K., Wanchoo, R.K., Toor, A.P. (2017). Esterification of acetic acid to methyl acetate using activated TiO2 under UV light irradiation at ambient temperature. Journal of Photochemistry and Photobiology A: Chemistry, 336, 170–175. DOI: 10.1016/j.jphotochem.2016.11.021
  20. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 114(19), 9919–9986. DOI: 10.1021/cr5001892
  21. Ohtani, B. (2013). Titania photocatalysis beyond recombination: a critical review. Catalysts, 3(4), 942–953. DOI: 10.3390/catal3040942
  22. Janczarek, M., Kowalska, E. (2017). On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems. Catalysts, 7(11), 317. DOI: 10.3390/catal7110317
  23. Hua, Z., Dai, Z., Bai, X., Ye, Z., Wang, P., Gu, H., Huang, X. (2016). Copper nanoparticles sensitized TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity for diclofenac degradation. Chemical Engineering Journal, 283, 514–523. DOI: 10.1016/j.cej.2015.07.072
  24. Slamet, S., Nasution, H.W., Purnama, E., Kosela, S., Gunlazuardi, J. (2005). Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catalysis Communications, 6(5), 313–319. DOI: 10.1016/j.catcom.2005.01.011
  25. Khemthong, P., Photai, P., Grisdanurak, N. (2013). Structural properties of CuO/TiO2 nanorod in relation to their catalytic activity for simultaneous hydrogen production under solar light. International Journal of Hydrogen Energy, 38(36), 15992–16001. DOI: 10.1016/j.ijhydene.2013.10.065
  26. Xu, S., Du, A.J., Liu, J., Ng, J., Sun, D.D. (2011). Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water. International Journal of Hydrogen Energy, 36(11), 6560–6568. DOI: 10.1016/j.ijhydene.2011.02.103
  27. Yu, J., Hai, Y., Jaroniec, M. (2011). Photocatalytic hydrogen production over CuO-modified titania. Journal of Colloid and Interface Science, 357(1), 223–228. DOI: 10.1016/j.jcis.2011.01.101
  28. Wade, L.G. (2006). Organic Chemistry. International Editions, 396–400. ISBN 978-0-321-76841-4 (0-321-76841-8, 8th Edition, Publisher : Pearson
  29. Azam, M.M., Waris, A., Nahar, N. (2005). Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass and Bioenergy, 29(4), 293–302. DOI: 10.1016/j.biombioe.2005.05.001
  30. Nasralla, N.H., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Šiller, L. (2018). Systematic study of electronic properties of Fe-doped TiO2 nanoparticles by X-ray photoemission spectroscopy. Journal of Materials Science: Materials in Electronics, 29(20), 17956–17966. DOI: 10.1007/s10854-018-9911-5
  31. Zhou, L., Deng, J., Zhao, Y., Liu, W., An, L., Chen, F. (2009). Preparation and characterization of N–I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation. Materials Chemistry and Physics, 117(2-3), 522–527. DOI: 10.1016/j.matchemphys.2009.06.036

Last update:

No citation recorded.

Last update:

No citation recorded.