skip to main content

Kinetic Study of SN2 Reaction between Paranitrophenyl Benzoate and Hydrazine in the Presence of CTAB Reverse Micelles

1Department of PNCO, School of Chemistry, Andhra University, Visakhapatnam, 530017, Andhra Pradesh, India

2Department of Chemistry, Gayatri Vidya Parishad College of Engineering (Autonomous), Visakhapatnam, 530048, Andhra Pradesh, India

Received: 20 May 2021; Revised: 3 Aug 2021; Accepted: 3 Aug 2021; Available online: 14 Aug 2021; Published: 20 Dec 2021.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Kinetic study of the reaction between p-Nitrophenyl benzoate (PNPB) by hydrazine (HYN) in the presence of Cetyltrimethylammonium bromide (CTAB)/Chloroform/Hexane reverse micellar medium shows that the reaction obeys first order kinetics with respect to each of the reactants. The rate of the reaction is much slower in reverse micellar medium compared to aqueous medium under identical conditions (kˈAq = 2.84×103 sec1, krm =1.34×104 sec1). The rate constants for the reaction in the reverse micellar medium have been determined at different values of W {W=[H2O]/[CTAB]} and at different concentrations of CTAB. It was found that the observed rate constant decreases with W. This kinetic behaviour was interpreted by using modified Berezin pseudo phase model, taking into consideration the distribution of the reactants, PNPB and hydrazine between the three pseudo phases, i.e., water pool, interface an organic phase. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: CTAB reverse micelles, Hydrazine, Kinetics, p-Nitrophenyl benzoate, Water pools
Funding: Ministry of Earth Sciences (MOES), National Center for Coastal Research (NCCR), India under contract MOES/ICMAM-PD/Supply. Order/81/2017

Article Metrics:

  1. Michael, R., Branka, M.L, Nancy, E.L., Kenneth, W.H. (2004). Water motion in reverse micelles studied by quasielastic neutron scattering and molecular dynamics simulations. J. Chem. Phys., 121(16), 7855-7868. DOI: 10.1063/1.1792592.3
  2. Amanda, J.M., John, W., Melanie, M.B. (2014). NMR and molecular dynamics study of the size, shape, and composition of reverse micelles in a cetyltrimethylammonium bromide (CTAB)/n-hexane/pentanol/water microemulsion. J. Phys. Chem. B, 118(36), 10767-10775. DOI: 10.1021/jp504585k
  3. Lubica, K., Eva, M., Peter, S., Petr, S., Petr, K. (2015). Nature of CTAB/Water/Chloroform Reverse Micelles at Above- and Subzero Temperatures Studied by NMR and Molecular Dynamics Simulations. Langmuir, 31(30), 8284–8293. DOI: 10.1021/acs.langmuir.5b01776
  4. Mario, J.P., Chaimovich, H. (1986). Water activity in reversed sodium bis(2-ethylhexyl) sulfosuccinate micelles. J. Phys. Chem., 90(2), 282-287. DOI: 10.1021/j100274a016
  5. Liu, Q. Gao, M., Zhang, J., Zhang, R., Li, J., Chen, S., Chen, G. (2020). Synthesis of interface activity of cetyl trimethylammonium benzoate, Russ. J. Phys. Chem. B, 14, 73–80. DOI: 10.1134/S1990793120010066
  6. Menger, F.M., Donohue J.A., Williams, R.F. (1973). Catalysis in water pools. J. Am. Chem. Soc., 95(1), 286-288. DOI: 10.1021/ja00782a075
  7. Arindam, D., Animesh, P., Rajib Kumar, M. (2016). Modulation of anionic reverse micellar interface with non ionic surfactants can regulate enzyme activity within the micellar waterpool. Colloid and Polymer Science, 294, 715–726. DOI: 10.1007/s00396-016-3829-3
  8. Luisi, P.L., Straub, B.E. (1984). Reverse Micelles, Plenum Press, New York, P.73, DOI: 10.1002/pol.1985.130230312
  9. Pileni, M.P., (1993). Reverse micelles as micro reactors. J. Phys. Chem., 7, 6967-6973. DOI: 10.1021/j100129a008
  10. Klyachko, N.L., Levashov, A.V., Kabanov, A.V. (1991). In: K Gratzel, K Kalyanasundaram (eds): Kinetics and Catalysis in Micro heterogeneous Systems. Marcel Dekker, New-York. 135-181
  11. Anjana, P., Ashutosh, P., (2008). Reverse micelles as suitable micro reactor for increased biohydrogen production, Int. J. Hydrogen Energy, 33(1), 273-278. DOI: 10.1016/j.ijhydene.2007.07.013
  12. Chopineau, J., Lagoutte, B., Thomas, D., Domurado, D. (2000) Reversed Micelles as Microreactors: N-terminal Acylation of RNase A and its Characterization. In: Gupta M.N. (eds) Methods in Non-Aqueous Enzymology. Methods and Tools in Biosciences and Medicine. Birkhäuser, Basel. DOI: 10.1007/978-3-0348-8472-3_10
  13. Irfan, H.L., Nagi, R.E.R., Jeenat, A., Arifa, A. (2019) Concept of Reverse Micelle Method For the Synthesis of Nano-Structured Materials. Current Nano Science, 15(2), 129–136. DOI: 10.2174/1573413714666180611075115
  14. Hoorshad, F., James, P.K., Victor, R.V., Olivia, A.G. (2012). Ionic Concentration Effects on Reverse Micelle Size and Stability: Implications for the Synthesis of Nanoparticles. Langmuir, 25, 9267–9274. DOI: 10.1021/la300586f
  15. Arash, H.K., Rashidi, A.M., Giti, K. (2017). Synthesis of tungsten nanoparticles by reverse micelle method. Journal of Molecular Liquids, 241, 897-903. DOI: 10.1016/j.molliq.2017.06.053
  16. Garcia-Rio, L., Ramon Leis, J., Elena, P., Emilia, I. (1993). Transfer of the nitroso group in water/AOT/isooctane micro emulsions: intrinsic and apparent reactivity. J. Phys. Chem., 97(13), 3437-3442. DOI: 10.1021/j100115a057
  17. Johnson, M.D., Lorenz, B.B., Wilkins, P.C., Lemons, B.G., Baruah, B., Lamborn, N., Stahla, M., Chatterjee, P.B., Richens, D.T., Crans, D.C. (2012). Switching Off Electron Transfer Reactions in Confined Media: Reduction of [Co(dipic)2]− and [Co(edta)]− by Hexacyanoferrate(II). Inorg. Chem., 51(5), 2757-2765. DOI: 10.1021/ic201247v
  18. Chuanyi, Y., Shaokun, T., He, Z., Deng, X. (2005). Kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane/reverse micelles. J. Mol. Catal. B Enzym., 35(4), 108-112. DOI: 10.1016/j.molcatb.2005.06.005
  19. Miyake, Y., Owari, T., Ishiga, F., Teramoto, M. (1994). Enzymatic reaction in water-in-oil microemulsions - Rate of hydrolysis of a hydrophobic substrate, 2-naphthyl acetate. J. Chem. Soc., Faraday Trans., 90, 979-986. DOI: 10.1039/FT9949000979
  20. García‐Río, L., Mejuto, J.C., Pérez-Lorenzo, M. (2005). Microheterogeneous Solvation for Aminolysis Reactions in AOT‐Based Water‐in‐Oil Microemulsions. Chemistry A European Journal, 11(15), 4361-4373. DOI: 10.1002/chem.200401067
  21. Nagalakshmi, K.V., Padma, M., Srikanth, V., Shyamala, P., Subba Rao, P.V. (2013). Catalytic effect of CTAB reverse micelles on the kinetics of dissociation of bis(2,4,6-tripyridyl-s-triazine) iron(II). Transition Met. Chem., 38, 523-527. DOI: 10.1007/s11243-013-9719-3
  22. Nagalakshmi, K.V., Shyamala, P. (2019). Kinetics of oxidation of [Fe(phen)3]+2 by persulphate: catalysis in the water pools of CTAB reverse micelles. Bulg. Chem. Comm., 51(4), 494–498. DOI: 10.34049/bcc.51.4.4946
  23. Nagalakshmi, K.V., Shyamala, P., Subba Rao, P.V. (2015). Catalytic effect of CTAB reverse micelles on the oxidation of indigo carmine by periodate, Ind. J. Chem., 54A, 351-355
  24. Nagalakshmi, K.V., Shyamala, P, Subba Rao, P.V. (2018). Kinetics of oxidation of toluidine blue by periodate: Catalysis by water pools of CTAB. Curr. Chem. Lett., 7, 93-100
  25. Fletcher, P.D.I., Robinson, B.H. (1984). Effect of organised surfactant systems on the kinetics of metal ligand complex formation and dissociation. J. Chem. Soc. Faraday Trans., 80(1), 2417-2437
  26. Schomacker, R., Stickdorn, K., Knoche, W. (1991). Chemical reactions in microemulsions: Kinetics of the alkylation of 2-alkylindan-1,3-diones in microemulsions and polar organic solvents. J. Chem. Soc., Faraday Trans., 87(6), 847-851

Last update:

No citation recorded.

Last update:

No citation recorded.