
 

Totally-green Fuels via CO2 Hydrogenation 
 

Lorenzo Spadaro1,2,*, Alessandra Palella1,*, Francesco Arena1,2 

 
1Istituto CNR di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Via S. Lucia sopra Contesse n.5, 

98126 Messina, Italy. 
2Dipartimento di Ingegneria, Università degli Studi di Messina, Viale F. Stagno D’Alcontres 31,  

I-98166, Messina, Italy.  

Bulletin of Chemical Reaction Engineering & Catalysis, 15 (2) 2020, 390-404 

Abstract 

Hydrogen is the cleanest energy vector among any fuels, nevertheless, many aspects related to its 

distribution and storage still raise serious questions concerning costs, infrastructure and safety. On 

this account, the chemical storage of renewable-hydrogen by conversion into green-fuels, such as: 

methanol, via CO2 hydrogenation assumes a role of primary importance, also in the light of a cost-to-

benefit analysis. Therefore, this paper investigates the effects of chemical composition on the 

structural properties, surface reactivity and catalytic pathway of ternary CuO-ZnO-CeO2 systems, 

shedding light on the structure-activity relationships. Thus, a series of CuZnCeO2 catalysts, at 

different CuO/CeO2 ratio (i.e. 0.2-1.2) were performed in the CO2 hydrogenation reactions at 20 bar and 

200-300 °C, (GHSV of 4800 STP L∙kg∙cat-1∙h-1). Catalysts were characterized by several techniques 

including X-ray Diffraction (XRD), N2-physisorption, single-pulse N2O titrations, X-ray Photoelectron 

Spectroscopy (XPS), and Temperature-programmed Reduction with H2 (H2-TPR). Depending on 

preparation method, the results clearly diagnostics the occurrence of synergistic structural-electronic 

effects of cerium oxide on copper activity, with an optimal 0.5 copper-to-cerium content. The rise of 

CuO loading up to 30% drives to a considerable increase of hydrogenation activity: C2Z1-C catalyst 

obtains the best catalytic performance, reaching methanol yield value of 12% at 300 °C. Catalyst 

activity proceeds according to volcano-shaped relationships, in agreement with a dual sites mechanism. 
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1. Introduction 

Although electric vehicles are the best envi-

ronmental choice, the high costs and the limited 

availability of several materials do not allow the 

total replacement of thermal engines worldwide. 
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Prompted by the need of meeting the rise in the 

energy demand and at the same time reducing 

polluting emissions, the industrialized countries 

are facing new model of development based on 

the renewable sources and zero emissions tech-

nologies adoption [1–3]. Regarding this, hydro-

gen is the most abundant element in the uni-

verse and it is considered a source of large-scale 

clean energy, which by 2050 could supply al-
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most a quarter of Europe's energy needs and al-

low to maximize business opportunities to-

wards a future of zero emissions. Indeed, the 

European Union has identified hydrogen as one 

of the six strategic areas where major interven-

tions and investments are needed, according to 

joint funding and assistance from the Horizon 

Europe program [4]. Despite the potential, the 

building of the infrastructure, for a hydrogen-

based economy, negatively affects this techno-

logical choice, as demonstrated by the FCH-JU 

European industrial partnership (Fuel Cells 

and Hydrogen Joint Undertaking) which is 

working on it since 2008, managing more than 

250 projects financed with 2 billion euro by 

public-private funds. In particular, many as-

pects related to distribution and storage of hy-

drogen (i.e. H2 highly compressed; 300 bar) still 

raise serious issues concerning infrastructure 

and safety. Therefore, to achieve the climate 

objectives, green-hydrogen from renewable en-

ergy sources (i.e. wind and sun) is now pro-

duced, obtaining new advanced synfuels at low 

carbon energy for powering hybrid and bi-fuel 

vehicles, as the most suitable route in the de-

carbonisation process and eco-life [5–7]. In fact, 

hydrogen has the double advantage to be a fuel, 

immediately available for using, and an energy 

vector, whose chemical accumulation can be 

pursued through its combination with other 

molecules. 

Furthermore, more than 3 Gton of CO2 are 

currently emitted to the atmosphere every 

month, with tremendous impact on climate 

change and global warming of the Earth. For 

this reason, efforts must be put forth to de-

crease emissions, permanently sequester CO2 

and convert it into valuable products [8–10]. In 

the light of a cost-to-benefit analysis, the com-

bination of green-hydrogen with CO2 from in-

dustrial processes can assume a key role in the 

perspective of a more efficient and cleaner en-

ergy generation [11–13]. 

Actually, the application of green-fuels of 

second-generation is one of the most suitable 

route to reach industrial and ecological targets 

in the short term, because of the lower costs, 

easy commercial adoption and fully industrial 

development. Differently from fossil, a totally-

green fuel does not give rise to extra CO2 emis-

sion in atmosphere, because its combustion, in 

the well-to-wheel cycle, generates a CO2 release 

equal to that necessary for its manufacturing, 

closing the CO2 balance, on the other words a 

fuel at zero-charge of carbon dioxide. On the 

other hand, besides the efforts to limit the pres-

ence of CO2 in the atmosphere by CCUS tech-

nologies, CO2 is assuming an even more im-

portant and strategic play-role in the energy 

field, as well as in the synthesis of industrial 

relevant products and chemicals [8,9,14–21]. 

As new raw material, the direct utilization of 

CO2 for industrial purposes finds commercial 

applications in the synthesis of methanol and 

other chemical compounds such as olefins and 

aromatics, which are a rapidly growing field, 

since CO2 represents an abundant and econom-

ic carbon source [10,22,23]. As one of the most 

worldwide relevant topics, the work would also 

reflect on the practical use of the hydrogena-

tion catalysts in combination to economically 

useful CCUS technologies. Indeed, the catalytic 

conversion of CO2 coming from the atmosphere 

into fuels and fine chemicals would be one of 

the most profitable and practical solutions to 

the problem of greenhouse gas emissions, pro-

vided that capture/sequestration and high 

pressure storage technologies are made eco-

nomically available [8]. 

Nevertheless, in the very short period, the 

most prosecutable actions and promising pro-

spective look upon the use of CO2-rich streams, 

coming from the industrial exhausted emis-

sions, such as: of brick and cement work, alt-

hough needs of clean-up stages, and further 

purification and concentration [16]. On this ad-

dress, Haldor-Topsoe is at the forefront in the 

use of CO2 as carbon feedstock through differ-

ent power-to-gas technologies, while ENI is re-

designing its lines of production in a greener 

vision, by the development of new hydrogena-

tion processes, called ENI EcofiningTM, for the 

green-fuels synthesis, strategically prefiguring 

the production of ultra-pure CO2 as industrial 

practice [13,24]. Despite considerable progress-

es made in the science of fuel, the industrial 

economic feasibility of hydrogen-to-liquid-fuels 

(HTL), such as: methanol, is still under debate. 

In this scenario, the development of more effi-

cient catalytic materials for an effective hydro-

genation of CO2 appears of great interest [25–

28]. 

As known, CuO/ZnO-based catalysts have 

the advantages of lower cost and higher chemi-

cal stability compared with other catalysts, 

such as those based on transition metal car-

bides (TMCs), bimetallic catalysts or Au-

supported catalysts [29,30]. Although 

CuO/ZnO/Al2O3 is the most intensively studied 

catalyst for the methanol synthesis, the use of 

ZrO2, CeO2 and TiO2 oxides was found to im-

prove both the activity and selectivity of 

CuO/ZnO-based catalysts in the CO2 hydro-

genation processes. Indeed, Si et al. recently 
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discussed on the influence of replacing Al2O3 

with CeO2 in the typical Cu-ZnO/Al2O3 catalyt-

ic composition for syngas conversion, suggest-

ing that the use of cerium oxide led to a re-

markable positive effect on the catalyst stabil-

ity, as a result of the preservation the ratio of 

Cu0/Cu+ on catalyst surface, as well as on the 

particle growth, due to the strong electron in-

teractions of the copper/ceria phase 

(Cu/Cu2O/CuO, Ce3+/Ce4+) during hydrogena-

tion reactions [31]. Metal dispersion and CO2 

adsorption capacity are two key parameters af-

fecting CO2 hydrogenation functionality of Cu-

based systems [32]. Similarly, in our previous 

works, we displayed that the use of several ox-

ides (i.e. as ZnO, ZrO2, CeO2, Al2O3, Gd2O3, 

Ce2O3, Y2O3) and alkaline metals (i.e. Li, Cs, K) 

could remarkably influence both catalyst struc-

ture and morphology, balancing the amount of 

the diverse copper species (i.e. Cu°/Cu+/Cu2+) 

and leading to a notable improvement of the 

catalytic performance [14,15,17,20,33,34]. On 

this account, ZrO2 has been shown to positively 

affect morphology and texture of Cu-ZnO based 

catalysts, favoring also CO2 adsorption / activa-

tion and methanol selectivity, while CeO2 could 

act as both electronic promoter and improver of 

surface functionality of Cu phase. As reported 

in our preliminary works, we have proved a 

greater specific activity of CuZnO-CeO2 cata-

lyst with respect to that of similar catalytic sys-

tems containing ZrO2 or other promoter oxides, 

facing several electronic and structural effects 

[14,15,18]. In spite of a generally higher       

specific activity, we have evidenced that CuZ-

nO-Ceria catalyst suffers from several practical 

limitations, such as: a lower surface area, espe-

cially compared to that of ZrO2 and Al2O3 pro-

moted catalysts. In particular, we have showed 

the effects of replacing ZrO2 carrier with CeO2 

oxide, especially on the development of the sur-

face area of CuZnO-based catalysts. Indeed, by 

fixing the amount of carrier phase (i.e. around 

40%), the catalysts without Ceria or at the less 

content of Ceria obtained a larger MSA and SA 

exposure and, consequently, a higher CO2 con-

version, despite the minor value of methanol 

yield per surface area [15,18]. 

In agreement with the formation of car-

bonates intermediates induced by the oxygen 

vacancies related to CeO2, we have observed a 

major selectivity to methanol on CuZnO cata-

lysts promoted by CeO2 addition with respect to 

other carrier oxides such as ZrO2 and Al2O3. On 

this regard, our preliminary findings perfectly 

agree with recent studies of Wang et al. who 

find a higher methanol selectivity on Cu/CeO2 

catalysts with respect to ZrO2 supported sys-

tems, according to an improved metal disper-

sion and oxygen vacancies formation induced 

by the interaction at the Cu/CeO2 interface 

[35]. Furthermore, Shi et al. gave evidence of 

an improvement in methanol productivity by 

TNTs addition on CuO-ZnO-CeO2 catalysts, as 

a results of enhanced Cu dispersion and CO2 

uptake [36]. 

On this account, we think that CeOx phase 

can act modifying the red-ox properties of the 

catalyst and improve the surface chemisorp-

tion-activation process of CO2, which remains, 

actually, one of the main factors determining 

the catalytic performance of copper-based cata-

lysts [13]. In particular, the process of chemi-

sorption of CO2 is affected by several factors 

such as the presence of basic sites and defects 

on the surface of the catalytic active elements 

[12,35]. In regard of this, a systematic study on 

the influence and effect of CeO2 content on 

physical-chemical property of CuZnO-based 

catalysts and, consequently, on the catalysts 

behavior into CO2 hydrogenation processes 

have not still reported, being almost unclear 

the role of CeO2 loading. 

Therefore, in this study a series of CuZnO-

CeO2 catalysts, with different CuO/CeO2 

weight ratio (i.e. 0.2-1.2) and a constant ZnO 

loading (ca. 15 wt.%), were prepared and tested 

in the CO2 hydrogenation reactions at 20 bar 

and 200-300 °C, aiming to go insight on the ac-

tivity and selectivity pathways and to shed 

light on the structure-activity relationships of 

CuZnCeO2 catalytic formulations. 

 

2. Materials and Methods 

2.1 Catalysts 

A series of CuZnO-CeO2 catalysts, with dif-

ferent CuO/CeO2 weight ratio (i.e. 0.2-1.2) and 

a constant ZnO loading (ca. 15 wt.%), were pre-

pared by reverse co-precipitation under ultra-

sounds irradiation route, which represent a 

synthesis method successfully employed since 

2007, even from an initial bench scale of grams 

up to some kilograms, always proving high re-

producibility, accuracy and stability in the syn-

thesis of different Cu-based catalytic materials, 

as confirmed by our previous studies 

[17,20,33]. Accordingly, an aqueous solution 

(ca. 100 mL) of Cu(NO3)2∙3H2O (Sigma-Aldrich, 

assay 99-104%), Zn(NO3)2∙6H2O (Sigma-

Aldrich, assay ≥99.0%) and (NH4)2Ce(NO3)6 

(Sigma-Aldrich, assay ≥98.5%) precursors was 

added drop-wise to a 1 M KHCO3 (Sigma-

Aldrich, assay 99.7%) solution (500 mL) under 

vigorous stirring and ultrasound irradiation, 

keeping pH constant at 8.0 by addition of 1M 
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KHCO3 solution. After precipitation, the solid 

was kept for 30 minutes under stirring and ul-

trasounds irradiation. Then, the solid was aged 

at 30 °C for 2 h, filtered and washed with hot 

distilled water. Thereafter, the catalysts were 

dried at 130 °C overnight and further calcined 

in air at 400 °C for 4 h. After preparation, all 

catalysts were doped with potassium solution 

by impregnation for achieving 1.0 wt.% of K2O. 

Powdered catalysts were pressed (10 ton∙cm-2) 

and then crushed and sieved to the particle size 

fraction (16-20 mesh) used for both characteri-

zation and testing measurements. Then, in or-

der to further assess the accuracy and precise-

ness of both synthesis procedure and analytical 

methods, each batch of prepared catalyst (ca. 

500 g each) was studied in double blind tests. 

Table 1 shows the list of catalysts, also report-

ing the chemical-physical properties. 

 

2.2 Catalyst Characterization 

Surface area (SA), pore volume (PV), and 

average pore diameter (APD) were obtained 

from nitrogen adsorption / desorption iso-

therms (77 K), using a fully automated gas ad-

sorption device (ASAP 2020, Micromeritics In-

strument). Physical adsorption isotherms were 

elaborated by standard BET and BJH methods 

for SA and PV evaluation, respectively. Before 

measurements, the samples were out-gassed at 

150 °C under vacuum (2 h).  

Temperature Programmed Reduction (TPR) 

analysis was carried out to settle a proper cata-

lyst activation protocol. The TPR measure-

ments were performed in the range 25-700 °C 

by the use of a semi-automatized laboratory mi-

cro-plant equipped with a linear quartz micro-

reactor (i.d. 4 mm) fed with a 5% H2/Ar mixture 

flowing at 60 stp cm3·min-1 and heated at the 

rate of 10 °Cmin-1. The H2 consumption was 

monitored through a Thermal-Conductivity De-

tector (TCD), calibrated with CuO standard. 

Under such conditions, TPR was reliable and 

accurate in terms of both peak position (±5 °C) 

and hydrogen consumption (±5 %). 

Metal Surface Area (MSA) values of cata-

lysts were obtained in the same apparatus by 

single-pulse N2O titrations, assuming a 

Cu:N2O=2 titration stoichiometry [37]. MSA 

values were calculated according to procedure 

elsewhere described [17]. Before measure-

ments, catalysts were reduced in-situ for 1 h at 

400 °C under H2 flow. After reduction, the sam-

ples were flushed in the He carrier flow at 410 

°C for 15 min, and then cooled to 90 °C for the 

measurement.  

X-ray Diffraction analysis (XRD) of powder 

samples in the 2θ range of 5-80° were per-

formed by a Philips X-Pert diffractometer oper-

ating with Ni -filtered Cu-K radiation at 40 

kV and 30 mA, at a scan rate of 0.5°·min-1 

[14,17]. X-ray fluorescence analysis (XRF) of 

catalyst was performed with a S8-Tiger 

WDXRF spectrometer (Bruker-AXS). To calcu-

late the chemical composition of catalysts, K1 

core-emissions of all chemical elements were 

taken for the quantitative analysis. The X-ray 

Photoelectron Spectroscopy (XPS) of samples 

was performed to value the chemical composi-

tion of the catalysts surface. Spectra and quan-

titative data were obtained using a spectrome-

ter (GMBH PHI 5800-01, Physical Electronics) 

operating with a monochromatized Al-K radi-

ation with a power beam of 300 W. The pass 

energy for the analysis of concentration and ox-

idation state of the surface atoms was 58 and 

11 eV, respectively. The BE regions of C1s 

(280-300 eV), Cu2p (920-968 eV), Zn2p (1010-

1060 eV), Ce3d (870-935 eV), and O1s (525-535 

eV) were investigated, taking the C1s line 

(284.8 eV) of adventitious carbon as reference 

[33,34,38–42]. 

 

2.3 Catalytic Activity Measurements 

Catalytic performance tests were performed 

at 20 bar and between 200 °C and 300 °C of 

temperature, using a semiautomatic laboratory 

micro-plant equipped with a AISI 316 stainless 

steel Plug Flow Reactor (i.d. 10 mm; e.d. 12 

mm; length of 250 mm), loaded with 0.5 g of 

Chemical composition (wt.%) S.A.BET 

m2∙gcat-1 

M.S.A. 

m2∙gcat-1 

APD 

nm 

P.V. 

cm3∙gcat-1 
    

CuO ZnO CeO2 K2O 

C1Z1C 15.1 14.8 70.1 1.0 126.2 23.9 18 0.33 

C2Z1C 29.7 14.7 55.6 0.9 181.0 45.1 17 0.39 

C3Z1C 45.8 15.1 39.7 1.0 129.1 40.0 19 0.35 

Table 1. Chemical-physical properties of CuZnCeO2 catalytic systems (BET Surface Area (S.A.BET), 

Average Pore Diameter (A.P.D.) and Pore Volume (P.V.) determined by N2-physisorption analysis, Met-

al Surface Area (M.S.A.) determined by single-pulse N2O titrations). 
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catalyst diluted with 1.0 g of SiC. Before all 

tests, catalysts were in-situ activated at 400 °C 

in reducing atmosphere, flowing 5% H2/Ar gas 

mixture for 1 h at a heating rate of 10°C∙min-1. 

After catalyst activation, the reactor was fed 

with a CO2/H2/N2 (3/9/1) mixture flowing at 40 

stp cm3∙min-1 (GHSV of 4800 STP L∙kgcat-1∙h-1), 

using nitrogen as internal standard. Reagents 

and products were online monitored employing 

a gas-chromatograph (GC) HP 6890, equipped 

with a thermal-conductivity detector (TCD) and 

two packed columns (Porapak Q and 5A Molec-

ular Sieve, Sigma-Aldrich) for the analysis of 

permanent gasses, and a flame ionization de-

tector (FID) coupled with a capillary column 

(PoraPLOT Q, i.d. 0.53 mm; length of 30 m,  

Agilent) for the hydrocarbon species quantifica-

tion. The products distribution was established 

by GC-FID, according to the relative sensitive 

factors of each compound, determined by using 

several standards. Hydrogen and CO2 conver-

sion values (XR, %, with R=H2 or CO2), es-

teemed by GC-TCD analysis with both the in-

ternal standard (Equation 1) and the mass bal-

ance (Equation 2) methods: 

 

(1) 

 

 

 

(2) 

 

where (Areapeakstandard,in/Areapeakstandard,out) is in-

troduced in Equation 1 to normalize the re-

sponse of the analyte (i.e. H2 or CO2) to the re-

sponse of the internal standard (i.e. N2), im-

proving the accuracy of quantitative GC-TCD 

analysis, as proved by good agreement between 

IS and MS methods (±5 %) and a reproducibil-

ity better than 95%. Meanwhile, selectivity of 

product i (Si, %) was calculated by GC-FID 

analysis, according to the following formula 

(Equation 3): 

 

(3) 

 

 

According to the use of both IS and MS calcula-

tion method, reaching the steady state condi-

tion, the reported value of selectivity agrees 

with that valued on the basis of the amount of 

formed i product with respect to the converted 

hydrogen (± 2%), as further proof of the accura-

cy of the analytical method. 

The absence of diffusional resistance and 

the kinetic regime of the catalytic measure-

ments were proved according to the Weisz–

Prater (NW–P < 1.0) criterion, verifying NW–P val-

ues on the order of 10-4 – 10-5, (Equation 4): 

 

 

 

 

 

(4) 

 

3. Results and Discussion 

3.1 Structure and Physical-chemical Properties 

Reflecting the synthesis of the catalysts 

with a different formulation, the chemical 

analysis of the bulk agrees with the expected 

composition, proving the effectiveness of the 

preparation method, which also allows obtain-

ing meso-pore structures with enhanced textur-

al properties. Indeed, the catalysts exhibit total 

surface area (SA) which ranges from 126 to 181 

m2∙gcat-1 with a similar average pore diameter 

(APD) of 16-18 nm (Table 1). Then, according 

to catalyst formulation, the SA has a parabolic 

tendency with the copper-to-cerium ratio, 

reaching the greatest extension at the middle 

CuO content (i.e. C2Z1-C catalyst), with the 

most favorable 0.5 copper-to-cerium ratio. Not 

depending on preparation method, the similar 

SA value of C1Z1-C (126 m2∙gcat-1) and C3Z1-C 

(129 m2∙gcat-1) catalysts clearly diagnostics the 

occurrence of a synergistic structural effect be-

tween cerium and copper oxides (Table 1). 

Apart from minor differences, the XRD 

analysis reveals that all catalysts are charac-

terized by very similar diffraction patterns, 

showing a prevalently crystalline catalyst ar-

chitecture (Figure 1). According to the chemical 

composition, the XRD patterns of all systems 
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Figure 1. XRD patterns of CuZnCeO2 systems 

(CeO2, JCPDS 34-0394 dotted black line; CuO, 

JCPDS 5-661, dash-dotted line red line; ZnO, 

JCPDS 08-7114, dashed green line). 



 

Bulletin of Chemical Reaction Engineering & Catalysis, 15 (2), 2020, 395 

Copyright © 2020, BCREC, ISSN 1978-2993 

consist in the overlapping of the diffraction sig-

nals of the crystalline phase of cubic cerianite 

(CeO2; JCPDS 34-0394), hexagonal tenorite 

(CuO; JCPDS 5-661) and monoclinic zincite 

(ZnO; JCPDS 08-7114) (Figure 1). 

Then, TPR analysis proves similar reduction 

behavior (Figure 2). In fact, the reduction pat-

tern of all catalysts is characterized by two re-

action zones, placed at low (LT; 100-270 °C) 

and high (HT; 300-670 °C) temperature, due to 

copper (Equations 5-8) and surface ceria 

(Equation 9) reduction, respectively. 

 

Reduction of ionic dispersed Cu species and/or 

of coordinative-unsaturated species (CUS): 

CuOx + xH2 → Cu° + xH2O (5) 

 

Reduction of isolated copper oxides: 

2CuO + H2 → Cu2O + H2O (6) 

Cu2O + H2 → 2Cu° + H2O (7) 

 

Reduction of copper in strong interaction with 

ZnO and CeO2 phase: 

CuO-MO + H2 → Cu° + H2O (8) 

 

Reduction of the ceria surface: 

2CeO2 + H2 → Ce2O3 + H2O (9) 

 

In particular, the reduction of Cu oxides    

occurs at temperatures below 290 °C, which is 

typical of bulk CuO [17], agreeing with the re-

duction of ionic dispersed copper and CUS 

(trange of 150-180 °C), isolated CuO and copper 

clusters in strong interaction with ceria (trange 

of 200-220 °C) [14,17,33], as shown in Figure 2. 

In addition, the TPR profile of C1Z1-C catalyst 

in the LT range reports the presence of an 

asymmetric peak with a TM1 maximum at ca. 

210 °C and a shoulder at 190 °C, while the re-

duction pattern of the high CuO loading cata-

lysts results in two better resolved peaks. In-

deed, with equivalent area, the TPR profile of 

C2Z1-C catalyst revels two convoluted peaks 

with maxima at 180 °C and 215 °C, respective-

ly. Then, C3Z1-Csample shows a growth of the 

reduction component at lower temperature, 

with a peak maximum centered at 178 °C, mir-

roring an increase of isolated CuO phase, as a 

consequence of higher loading and minor Cu 

dispersion [14,17]. 

The chemical analysis of catalyst surface 

(ESCA) revels an evident enrichment of Cu and 

Ce atoms at the surface of the catalyst with re-

spect to the bulk (Figure 3), highlighting the el-

evate grade of dispersion reached by Cu and Ce 

species on the catalyst surface through the 

preparation method [14,15]. In addition, the 

higher surface concentration of Cu and Ce ions 

compared to Zn, prefigures the encapsulation 

of the ZnO phase into a CuO-CeO2 matrix, also 

justifying a remarkable chemical affinity be-

tween copper and cerium oxide species 

[18,43,44]. 

Then, Figure 4 displays the core level spec-

tra of O1s, Cu2p, Zn2p and Ce3d atoms. Apart 

from minor differences, all catalysts display 

similar features. Namely, Cu2p spectra display 

2p1/2 (933.0-934.3eV), 2p3/2 (953.0-953.4 eV) 

Figure 2. TPR analysis of CuZnCeO2 systems. 
Figure 3. Element surface abundance versus 

bulk chemical composition. 
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transitions, and shake-up lines characteristic of 

oxidized copper [45–47]. According to a higher 

binding energy of Cu2p3/2 (934.3 eV) and O1s 

(531.3 eV), Cu on the surface of C2Z1-C cata-

lyst prefigures a higher oxidation state, as fur-

ther confirmed by the evident asymmetry of 

O1s peak, pointing out the existence of differ-

ent oxide species [45]. Indeed, the shape of O1s 

spectra is diagnostic of the presence of various 

kinds of oxygen species. In particular, the de-

convolution analysis well distinguishes the 

presence of two O1s peaks centered at about 

529.9eV (OI) and 531.6eV (OII), according to 

Gaussian-Lorentzian convolution shape (after 

Shirley-background subtraction), accounting 

for lattice oxygen (OI) and molecular oxygen 

(weakly bonded) and/or adsorbed species such 

as carbonate and hydroxyl groups (OII) [48–54], 

as summarized in Table 2. Furthermore, the 

higher energy position of O1s peaks of C2Z1-C 

catalyst also prefigures electronic effects of the 

surrounding ions affecting the electron density, 

perhaps due to incorporation of Cun+ ions into 

ceria lattice (i.e. solid solutions). Therefore, 

Zn2p spectra does not reveal any significant 

difference in term of binding energy. In turn, 

OII   OIa   OII/OI+OII 

   energy (eV) area (%)   energy (eV) area (%)  (--) 

C1Z1-C 531.6 27.9   529.8 72.1  0.28 

C2Z1-C 531.6 60.4   529.9 39.6  0.60 

C3Z1-C 531.6 25.8   529.8 74.2  0.26 

Table 2. Data of deconvolution analysis of O1s spectra of samples. 

Figure 4. XPS spectra of O1s, Cu2p, Zn 2p and Ce3d core-level transitions. 
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the spectra of Ce3d is rather complex due to 

the evident contribution of six transitions rela-

tive to Ce4+ and four hidden components of Ce3+ 

ions [40,55,56]. Taking the energy-transition at 

916.3 eV as characteristic of Ce4+ [40,57], the 

XPS analysis signals a rise of the Average Oxi-

dation Number (AON) of cerium from 3.5 (i.e. 

C2Z1-C) to 3.8-3.9 (i.e. C1Z1-C and C3Z1-C, re-

spectively), as proof of the greater content of 

Ce3+ ions on the surface of C2Z1-C catalyst 

(Figure 4). 

 

3.2 Results of the Catalytic Tests 

The results of catalytic tests in the CO2 hy-

drogenation are summarized in Figure 5A-C 

and in Table 3 in terms of H2 and CO2 conver-

sion (XH2/CO2), methanol selectivity (SCH3OH), 

methanol yield (YCH3OH) and normalized reac-

tion rate (rate). Denoting a similar catalytic 

pathway, all systems report a progressive in-

crease of the activity with the rise of reaction 

temperature from 200 °C to 300 °C. However, 

higher temperature of reaction significantly fa-

vors the formation of CO, leading to a notable 

drop in the methanol selectivity (Figure 5A-C 

and Table 3). 

Thus, the catalysts performance clearly 

demonstrates the close relationship between 

chemical composition and catalytic activity. In-

deed, the conversion of hydrogen proceeds ac-

cording to a volcano shaped trend with the 

growth of the CuO/CeO2 ratio, as shown in Fig-

ure 5A. Namely, regardless of reaction temper-

ature, the increase of CuO loading in the cata-

lyst from 15% to 30% (associated to a conse-

quent decrement of CeO2 from ca 56% to 40%), 

drives to a considerable increase of hydrogena-

tion activity at any temperature. Nevertheless, 

above the 30% of CuO the conversion of hydro-

  
200 °C   250 °C   300 °C 

XH2 XCO2 SCH3OH rate   XH2 XCO2 SCH3OH rate   XH2 XCO2 SCH3OH rate 

C1Z1-C 2.01 2.45 88.96 0.82   3.8 5.06 83.44 1.56   7.95 12.68 70.27 3.26 

C2Z1-C 7.07 9.1 85.64 2.9   13.44 21.19 71.88 5.52   19.65 34.11 63.5 8.07 

C3Z1-C 5.22 8.13 72.42 2.14   10 19.08 54.6 4.1   12.5 27.16 41.32 5.13 

Table 3. Catalysts behavior at diverse temperatures: hydrogen and CO2 conversion (XH2/CO2, %), metha-

nol selectivity (SCH3OH, %), and normalized reaction rate (rate, mol(H2)·gcat-1.s-1). 

Figure 5. Catalytic results: (A) Conversion of hydrogen (XH2, %), (B) Selectivity to methanol (Smethanol, 

%), and (C) Yield to methanol (Ymethanol , %) at diverse temperature. 
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gen slowly goes down (Figure 5A) due to the 

loss of dispersion, as proved by decreasing of 

MSA and SA with the Cu loading. Indeed, the 

MSACu-to-Cu ratio decreases from ca. 2.0 of 

C1Z1-C and C2Z2-C catalyst to 1.0 of C3Z1-C 

sample, who also shows a surface concentration 

of Cu comparable to that of bulk, Figure 3. 

Then, the selectivity to methanol follows an al-

most exponential decay with the rise of the 

CuO/CeO2 ratio, pointing out a greater promot-

ing effect towards the Reverse Water Gas Shift 

(RWGS) reaction, also favored by the increase 

of temperature (Figure 5B). 

As result of the enhanced structural and 

chemical properties, C2Z1-C catalyst obtains 

the best catalytic performance at any tempera-

ture, reaching the highest methanol yield value 

at 300 °C (more than 12%, Figure 5C). Despite 

of the lesser activity, C3Z1-C catalyst displays 

a catalytic behavior not so far from that of 

C2Z1-C sample. In particular, this system 

shows a progressive rise of methanol formation 

with temperature up to 250 °C (5.5% of yield), 

followed by a slight decrease in the methanol 

synthesis performance consequent with the in-

creasing temperature (5.2% of yield at 300 °C), 

reflecting the drop in the methanol selectivity 

(Figure 5C). Then, mirroring the lowest content 

of active phase (Table 1), methanol yield grows 

almost exponentially with the rise of tempera-

ture on C1Z1-C catalyst, reaching 5.6% at 300 

°C, according to the higher selectivity. 

Therefore, Table 4 compares the perfor-

mances of C1Z1-C, C2Z1-C and C3Z1-C cata-

lysts with those other Cu-CeO2 based catalysts 

reported in the literature, at similar reaction 

conditions [23,36,45,58,59], although, the influ-

ence of the loading of active CuO elements on 

the catalytic properties and structure-activity 

relationships of CuZnCeO2 ternary systems 

has not been currently systematically ana-

lyzed. 

The values of methanol productivity report-

ed are comparable, if not superior, with those 

referred to in the literatures [36,45,59]. In fact, 

only few works have discussed comparable ac-

tivity and, when greater than C2Z1-C catalyst 

(i.e. methanol formation rate of 1.40      

mol∙gcat-1·s-1 @ 250 °C and 20 bar), the catalyt-

ic performance was almost always referred to 

catalytic results carried out at higher value of 

pressure (i.e. 30-50 bar), temperature (>250 °C) 

or H2-to-CO2 ratio (>3). In particular, Shi et al. 

[36] recently synthesized a series of CuO-ZnO-

CeO2 and CuO-ZnO-CeO2/TNTs composite cat-

alysts, attesting an improvement in methanol 

productivity from 1.39 to 2.64 mol∙gcat-1·s-1 on-

ly after TNTs addition, as improver of Cu dis-

persion and CO2 adsorption capacity. Similar-

ly, the lower rate of 1.24 mol∙gcat-1·s-1 was ob-

tained by Angelo and co-workers at 260 °C and 

applying very higher pressure (i.e. 50 bar) [59] 

on of CuO-ZnO-CeO2 based catalysts prepared 

by conventional co-precipitation. An improve-

ment of productivities were reached when ZrO2 

and Al2O3 were introduced in the catalytic for-

mulation in combination with ceria, further ev-

idencing that an optimal balance between the 

various oxides is a key factor for obtaining ma-

terials with enhanced chemical and catalytic 

properties [23,59]. Thus, the synthesis of meth-

anol and hydrocarbons proceeds through CO2 

activation, which runs with CO2 chemisorption 

on catalyst surface, representing a crucial issue 

of the process. Despite CO2 is a kinetically sta-

ble molecule, the chemisorption process can be 

Catalyst 
rate 

(molCH3OH/gcat∙s) 
T (°C) P (bar) H2/CO2 ref. 

C1Z1 0.44 250 20 3.0 this work 

C2Z1 1.37 250 20 3.0 this work 

C3Z1 0.75 250 20 3.0 this work 

CuO-ZnO-CeO2 1.39 260 30 3.0 [36] 

CuO-ZnO-CeO2-TNTs 2.64 260 30 3.0 [36] 

CuO-CeO2-TiOx 0.13 235 30 3.0 [58] 

CuO-ZnO-CeO2 0.22 240 1 9.0 [45] 

CuO-ZnO-CeO2 1.24 260 50 3.9 [36] 

CuO-ZnO-ZrO2-CeO2 (40:60) 1.44 260 50 3.9 [59] 

CuO-ZnO-ZrO2-CeO2 (20:80) 1.94 260 50 3.9 [59] 

Cu/AlCeO 3.31 260 30 3.0 [23] 

Cu/CeO2 2.08 260 30 3.0 [23] 

Table 4. Comparison of the performance of Cu-CeO2-based catalysts in the CO2 hydrogenation to 

methanol. 
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improved through several factors, such as: a 

larger exposure of the surface area, surface de-

fects, and a great presence of basic sites. On 

this regards, all catalysts were promoted in the 

alkaline character by K2O adding (1 wt.%). 

 

3.3 Structure-Activity Relationship of CuO-ZnO

-CeO2 Systems 

The results of the physical-chemical analy-

sis prove that a high copper loading leads to 

the sintering of the catalytic surface, also af-

fecting the morphology of the composite materi-

als. Then, the synergism occurring between the 

oxides of copper and cerium seems to be the 

key-factor controlling both physical-chemical 

properties and catalytic behavior of catalyst. 

With regard to the structural properties (i.e. SA 

and MSA), this study stresses the existence of 

an optimal content of copper with respect to ce-

rium, which also affects the catalytic perfor-

mance of the catalyst. Indeed, the CuO-to-CeO2 

weight ratio of about 0.5 accounts for the opti-

mal chemical composition, according to the 

highest exposure of the surface of C2Z1-C cata-

lyst (SA = 181 m2∙gcat-1; MSA = 45 m2∙gcat-1,    

Table 1). Then, the quantitative results of XPS 

deconvolution analysis clearly give evidence of 

the fact that the catalysts which achieve the 

better catalytic performance also diagnostic the 

larger number of oxygen vacancies (Table 2). 

Indeed, the higher value of Area(OII)/Area(OI+OII) 

ratio reported by C2Z1-C catalyst proves the 

larger extension of oxygen vacancies. In partic-

ular, C2Z1-C catalyst shows the highest 0.6 

value in term of Area(OII)/Area(OI+OII) ratio, also 

reflecting the lowest A.O.N. of cerium on the 

surface. 

Independently to CuO content, the progres-

sive increase of H2 conversion with the increase 

in temperature is associated to a significant 

drop in selectivity. From one side, the higher 

temperature favors the reaction kinetics of hy-

drogenation and the catalyst activity, prompt-

ing methanol synthesis and RWGS reactions. 

On the other side, the increase of temperature 

hinders catalyst selectivity to methanol. Be-

cause of the opposite effect of temperature, the 

catalysts report the maximum methanol 

productivity within 300 °C (Figure 5C). In par-

ticular, the best catalytic performance has been 

achieved by C2Z1-C catalyst at 300 °C, both in 

term of hydrogenation rate and methanol 

productivity, reflecting the highest exposure of 

the catalytic surface and prefiguring the exist-

ence of structure-activity relationships. Then, 

Figure 6 shows the tendency of methanol selec-

tivity as a function of hydrogen conversion. Ir-

respectively to copper content, C1Z1-C and 

C3Z1-C catalysts follow an identical reaction 

profile, as proof of same reaction mechanism 

occurring on the surface of the two catalysts. 

Diversely, the trend of C2Z1-C catalyst diverts 

significantly from that of the other systems, ac-

cording to a more favorable catalytic pathway, 

which could prove a different reaction mecha-

nism. Hence, these findings suggest the exist-

ence of several factors governing the methanol 

synthesis, in addition to those strictly related 

to the hydrogenation functionality of catalyst.  

As extensively reported in literature 

[12,13,60–65], the methanol synthesis via the 

catalytic CO2 hydrogenation occurs through 

different consecutive reactive stages. According 

to a dual site mechanism, CO2 is reactively 

chemisorbed on Cu+ sites, while H2 is exclu-

sively chemisorbed on the metallic surface of 

copper (Cu° sites) and further dissociated. 

Thus, the chemisorbed CO2 species and their 

intermediates are hydrogenated by atomic hy-

drogen. On this address, the stereochemistry 

and the chemisorption of the reagents influ-

ence the product selectivity. In particular, the 

CO2 chemisorbed can assume two different ge-

ometries and, among them, the bridge-formate 

intermediate leads more easily to methanol, al-

so favored by the lower temperature [35,66]. In 

our previous works [14,15,17,18,20,33,34], we 

have clarified the role explicated by several 

promoters as the oxide carriers. In particular, 

we found that the use of several oxides (i.e. as 

ZnO, ZrO2, CeO2, Al2O3, Gd2O3, Ce2O3, Y2O3) 

and alkaline metals (i.e. Li, Cs, K) could re-

markably influence both catalyst structure and 

copper AON, balancing of the amount of the di-
Figure 6. Catalytic results: conversion of hy-

drogen (%) versus Selectivity to methanol (%). 
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verse copper species (i.e. Cu°/Cu+/Cu2+) and 

leading to a notable improvement of the cata-

lytic performance. In particular, we have 

demonstrated that ZnO and ZrO2 act as both 

structural promoters (favoring the development 

of the metal surface area and hindering the sin-

tering of Cu° clusters) and electronic promoters 

(stabilizing the unstable Cu+ sites through the 

formation of oxygen bridges Cu+-O-M). Hence, 

in agreement with the dual site mechanism, we 

have also shed light on the nature of structure-

activity relationships in terms of interfacial   

area [17,18,20]. The interfacial area represents 

the contact surface between the Cu° cluster 

and the oxide phase, reflecting the equilibrium 

of Cu° and Cu+ sites involved in the methanol 

synthesis. Affecting both the chemisorption 

process and the catalyst surface coverage, the 

extension of interfacial area can play a funda-

mental role in the methanol synthesis [30]. In-

deed, irrespectively to the reaction kinetics or-

der, the methanol formation rate is directly 

proportional to the partial pressure of H2 and 

CO2. Being the concentration of CO2 and H2 

chemisorbed proportional to the number of ac-

tive sites, it can be assumed that the reaction 

rate is directly related to the value of interfa-

cial area, as follows: 

 

 (10) 

 

 

Hence, an excessive presence of one reagent 

with respect to the other can be a limit for the 

reaction kinetics; for instance, a too large expo-

sure of the metallic surface can drive to an ex-

cessive hydrogen coverage, which can negative-

ly affect the CO2 chemisorption and the reac-

tion rate. In addition, the existence of Cu° sites 

is in direct competition with that of Cu+ cen-

ters, due to the occurring of both reduction and 

oxidation process during the catalytic cycle. On 

this address, the role played by the interfacial 

area appears even more clear by plotting reac-

tion rate (molCH3OH∙gcat-1·s-1) and turn-over-

frequency number, esteemed on Cu sites calcu-

lated by N2O titrations (TOF; s-1), as a function 

of  parameter (i.e.  = MSA/SA), taken as an 

index of the extension of the interfacial area 

[18].  

In particular, the reaction rate closely fol-

lows the profile of a typical volcano-shaped re-

lationship, with the maximum value reached at 

about 0.25  (i.e. C2Z1-C catalyst), as shown in 

Figure 7A. On this route, the higher catalytic 

performance of C2Z1-C catalyst would reflect 

the occurring of a greater synergism between 

copper and cerium oxides, driving to a more fa-

vorable combination of Cu° and Cu+ active 

sites, as well as it would mirror a better struc-

tural and electronic effects played by the com-

bination of ZnO and CeO2 promoters. As fur-

ther proof of the dual site mechanism, the Fig. 

7B shows similar relationships with TOF at 

the different temperatures. In particular, mov-

ing from 200 °C to 300 °C, the peak maximum 

in TOF shift from  values of ca. 0.255 to 0.233, 

reflecting a different kinetic dependence of Cu° 

and Cu+ sites on temperature. In particular, 

the higher temperature seems to favor catalyst 

with a greater number of Cu+ active sites, 

which can be explained by the greater energy 

required for the formation of bidentate formate 

species on Cu+ active sites. In addition, catalyst 

Figure 7. Catalysts structure-activity relationship: (A) normalized reaction rate and (B) TOF versus 

catalyst interfacial area () at diverse temperature. 
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reduction and surface dewatering are thermo-

dynamically favored by the higher tempera-

ture, while the oxidation processes are disad-

vantaged by temperature, due to the exother-

mic nature of the process. On the other hand, a 

greater reduction of cerium oxide can contrib-

ute to stabilize Cu+ sites. In addition, the meth-

anol formation might involve highly dispersed 

Cu ions across the surface and Cu0-O-Cu+1 spe-

cies in interaction with CeO2 phase, which are 

strongly hindered by the presence of water on 

the catalyst surface [16]. 

 

4. Conclusions 

The influence and effect of CeO2 content on 

physical-chemical and catalytic properties into 

CO2 hydrogenation processes of CuZnCeO2 cat-

alysts has been assessed. The results diagnos-

tic the occurrence of synergistic structural-

electronic effects of cerium oxide on copper ac-

tivity, with an optimal 0.5 copper-to-cerium ra-

tio. Indeed, C2Z1-C catalyst with CuO-to-CeO2 

ratio of 0.5 reports the highest surface exposure 

(SA = 181 m2∙gcat-1; MSA = 45 m2∙gcat-1), even ob-

taining the highest number of oxygen vacan-

cies. As result of the enhanced structural and 

chemical properties, C2Z1-C catalyst obtains 

the best catalytic performance at any tempera-

ture, reaching the highest methanol yield value 

of 12% at 300 °C. Therefore, all findings ac-

count for a mutual synergistic effect played by 

CuO-CeO2 oxides. In particular, the chemical 

affinity is at the basis of the synergic activity of 

copper and cerium, reflecting some electronic 

effects possibly due to incorporation of Cu ions 

into ceria. The copper-to-cerium ratio is the 

key-factor controlling physical-chemical proper-

ties and catalytic behaviour of catalyst. The 

conversion of hydrogen proceeds according to a 

volcano shaped trend with the CuO-to-CeO2 ra-

tio. Cerium oxide stabilizes Cu+ sites, in partic-

ular when highly dispersed Cu0-O-Cu+1 species 

interact with CeO2 phase across interface. As 

proof of the dual site mechanism of methanol 

synthesis, the interfacial area extension re-

markably affects reaction rates and methanol 

turn-over-frequency. 

Properly, the results obtained in this study 

assess the practical employment of CuZnO-

CeO2 catalytic compositions in the direct utili-

zation of industrial streams containing CO2 

and in the storage of the surplus of electrical 

energy through the conversion of H2 used as 

chemical-energy vector. This would allow to 

achieve both the full exploitation of renewable 

energy resources (e.g. wind and solar photovol-

taic), through the development of integrated 

micro-generation energy systems, and the im-

provement of smart grid systems. 
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