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Abstract 

The SCMNPs@BPy-SO3H catalyst was prepared and characterized using Fourier Transform Infrared 

Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Vibrating Sample Magnetometry (VSM), En-

ergy Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Scanning Electron Microscopy 

(SEM). Afterwards, its capability was efficiently used to promote the one-pot, three-component synthe-

sis of pyrano[2,3-c]pyrazole and 2-amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-one derivatives. The 

strategy resulted in the desired products with excellent yields and short reaction times. The 

SCMNPs@BPy-SO3H catalyst was readily recovered using a permanent magnetic field and it was re-

used in six runs with a slight decrease in catalytic activity. Copyright © 2020 BCREC Group. All rights 

reserved 
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Research Article 

1. Introduction 

In the last decade, considerable attention has 

been paid to the synthesis of Fe3O4 magnetic na-

noparticles (MNPs) in various fields of applica-

tions due to their unique features, such as: high 

surface area, superparamagnetic behavior, low 

toxicity, biocompatibility, suitability for large-

scale generation, simple recovery, and coupling 

with organic and inorganic molecules [1-9]. 

Coating an organic (biowastes) or inorganic 

(bentonite, alumina, silica, zeolite, and metal 
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oxides) support surface on MNPs prevents these 

nanomaterials from agglomeration due to the 

strong dipole-dipole attraction; it also improves 

their efficiency in terms of catalytic activity and 

simplify separation [10-11]. Surface modifying 

of Fe3O4 magnetic nanoparticles with silica lay-

er growth the available active sites and amelio-

rate the chemical stability [12]. Furthermore, 

because of the presence of active hydroxyl 

groups on the silica surfaces, a wide range of or-

ganic and inorganic linkers can be attached to 

them and promote their application in many 

chemical processes. 
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Pyran scaffolds have been highlighted as the 

important heterocyclic molecules because of 

their widespread presence in natural com-

pounds that made them more important to be 

used in pharmaceuticals, cosmetics industries, 

pigments, and biodegradable agrochemicals 

[13-16]. Pyranopyrazole derivatives, as one of 

the pyran annulated heterocyclic compounds, 

have attracted considerable attention in vari-

ous fields including chemistry, biology, and 

pharmacology due to their observed features, 

such as: antimicrobial [17], antiplatelet [18], 

antiinflammatory [19-21], antitumor [22], anti-

cancer [23], analgesic [24-25], molluscicidal 

[26], cholinesterases inhibitory activity [27], 

vasodilator [28], and human Chk1 kinase in-

hibiting activity [29]. The synthetic strategy to 

prepare pyranopyrazole derivatives includes 

utilization of one-pot four-component condensa-

tion of hydrazine hydrate, aldehyde, ethyl 

acetoacetate, and malononitrile. Some catalysts 

have been utilized to perform this reaction, 

such as: DABCO [30], meglumine [31], -

alumina [32], ionic liquid [33], isonicotinic acid 

[34], triethylamine [35-36], morpholine triflate 

(MorT) [37], Ba(OH)2 [38], glycine [39], 

Fe3O4@SiO2‐HMTA‐SO3H [40], per-6-amino-β-

cyclodextrin (per-6-ABCD) [41], triethylamine 

[42], cetyltrimethyleammonium chloride 

(CTACl) [43], urea [44], -Cyclodextrine-

pichlorohydrin [45], molecular sieves [46], and 

SnO2 quantum dots [47]. Recently, a one-pot 

three-component condensation of 4-hydroxy-

coumarin, malononitrile, and different aryl al-

dehydes have been reported for the construc-

tion of substituted pyrano[3,2-c]coumarins    

using various catalytic systems, such as: hexa-

decyltrimethyl ammonium bromide [48], nano-

particles [49], (DAHP) [50], ionic liquids [51], 

MGO [52], Mg/La mixed metal oxides [53], na-

nosilica [54], and H6P2W18O62.18H2O [55]. Some 

of these methods highlight certain merits in re-

actions, but others also have limitations, such 

as: long reaction times, the low yield of the 

products, hard work-up and difficult recovera-

bility. 

 

2. Materials and Methods 

2.1 Experimental 

All the pure chemical substances were pur-

chased from Merck and Aldrich Companies and 

applied without any further purification. Melt-

ing points of the substrate were carried out on 

Electrothermal-9100 apparatus and uncorrect-

ed. Fourier transform infrared spectroscopy 

(FT-IR) was recorded with a PerkinElmer PXI 

spectrometer using the KBr wafers that was 

operating in the range of 400-4000 cm-1. X-ray 

diffraction (XRD) patterns of samples was tak-

en with a Philips instrument with a wave-

length of 1.54 Å using Cu-K radiation. Ther-

mogravimetric analyses (TGA) were examined 

by a Du Pont 2000 thermal analysis apparatus 

under nitrogen atmosphere at a heating rate of 

10 °C/min. The magnetic properties were meas-

ured by a vibrating sample magnetometry 

(VSM; Lakeshore 7200 at 300 kVsm) at room 

temperature. Energy-dispersive X-ray spectros-

copy (EDX) analysis was performed for the 

chemical composition of synthesized nanoparti-

cles (ESEM, Philips, and XL30). Scanning elec-

tron microscope (SEM) images were recorded 

with an SEM-LEO 1430VP instrument about 

the size, shape and morphology of the nanopar-

ticles. 

 

2.2 Catalyst Synthesis 

2.2.1 Preparing Fe3O4 nanoparticles 

In a typical method, a solution of 

FeCl2.4H2O (4.27 g) and FeCl3.6H2O (11.65 g) 

salts was dissolved in 150 mL deionized water 

and stirred under nitrogen atmosphere at 70 

°C. Then, 15 mL NH4OH (25%) was slowly 

dropped into the reaction solution, while being 

sonicated under nitrogen atmosphere within 30 

min. The color of the reaction mixture changed 

from orange to black. The product of magnetic 

nanoparticles was isolated magnetically from 

the reaction solution followed by rinsing sever-

al times with deionized water and vacuum-

drying. 

 

2.2.2 Preparing nano-Fe3O4@SiO2 core shells 

The 1 g of Fe3O4 nanoparticles, 65 mL of 

ethanol and 25 mL of deionized water were 

added into 250 mL three-neck flask. The reac-

tion solution was sonicated for 20 min. Then, 4 

mL of NH4OH (25%) and 0.5 mL of tetraethy-

lorthosilicate (TEOS) were added dropwise to 

the flask. The reaction mixture was stirred at 

ambient temperature for 16 h. Finally, the pre-

cipitate was isolated with an external magnetic 

field, rinsed with distilled water and ethanol, 

and then dried in a vacuum oven. 

 

2.2.3 Preparation of Fe3O4@SiO2-PC magnetic 

nanoparticles 

2 g of Fe3O4@SiO2 NPs was dispersed in 50 

mL of dry toluene in a round-bottom flask us-

ing an ultrasonic water for 30 min. Afterwards, 

4 mL of 3-chloropropyltriethoxysilane (PC) was 
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slowly added into the flask and refluxed with 

mechanical stirring for 24 h under nitrogen gas 

protection. Afterward, the amino-modified mag-

netite nanoparticles were gathered using an 

external magnetic field followed by rinsing sev-

eral times with ethanol and then being dried 

under vacuum oven. 

 

2.2.4 Preparation of SCMNPs@ThSCa 

1 g of the prepared Fe3O4@SiO2-PC magnet-

ic nanoparticles was dispersed in 75 mL of eth-

anol using an ultrasonic bath for 30 min and 

mixed with 5 mL of thiosemicarbazide (ThSCa), 

and the reaction solution was refluxed for 24 h 

under a continuous flow of nitrogen gas. The 

resultant solid precipitates were isolated using 

a permanent magnetic field that was washed 

three times with distilled water to eliminate 

the unreacted chemicals and then dried in a 

vacuum oven for 17 h. 

 

2.2.5 Preparing SCMNPs@ThSCa-BPy 

1 g of the prepared SCMNPs@ThSCa was 

dispersed in 75 mL of ethanol and mixed with 

2.2 mL of 2,2´-bipyridyl ketone (BPy). The reac-

tion solution was stirred under reflux condi-

tions for 12 h and the resultant solid product 

was separated using an external magnetic field 

that was rinsed several times to remove the un-

reacted chemicals; it was then dried in a vacu-

um. 

2.2.6 Preparation of SCMNPs@BPy-SO3H 

1 g of SCMNPs@ThSCa-BPy was added to 

20 mL of dry dichloromethane and ultrasoni-

cally dispersed for 30 min. Afterwards, 6 mmol 

of chlorosulfonic acid was slowly added to the 

reaction vessel and the achieved mixture was 

stirred in the ice bath for 6 h. Finally, these 

precipitates were isolated from the reaction so-

lution with a permanent magnet, washed sev-

eral times with distilled water, and dried in a 

vacuum oven at 50 ℃ for 15 h. All stages of the 

SCMNPs@BPy-SO3H synthesis is shown in 

Scheme 1. 

 

2.2.7 General process for the synthesis of pyra-

no[2,3-c]pyrazoles (5) 

A mixture of hydrazine hydrate (1 mmol), 

acetoacetic ester (1 mmol), aldehyde (1 mmol), 

malononitrile (1 mmol) and SCMNPs@BPy-

SO3H (20 mg) was stirred at 80 °C under sol-

vent-free conditions for the appropriate time. 

After completion of the reaction, the catalyst 

was removed using an external magnetic field 

and the achieved product was purified by re-

crystallization in aqueous ethanol. 

 

2.2.8 General process for the synthesis of 2-

amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-

ones (7) 

A mixture of 4-hydroxycoumarin (1 mmol), 

aldehyde (1 mmol), malononitrile (1 mmol), 

Scheme 1. All stages of the SCMNPs@BPy-SO3H synthesis. 
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and SCMNPs@BPy-SO3H (15 mg) was stirred 

at 80 oC under solvent-free conditions for the 

appropriate time. After completion of the reac-

tion, the catalyst was removed using an exter-

nal magnetic field and the achieved product 

was purified by re-crystallization in aqueous 

ethanol. 

 

3. Results and Discussion 

3.1 FTIR Analysis of SCMNPs@BPy-SO3H 

The FT-IR spectrum of the prepared Fe3O4, 

F e 3 O 4 @ S i O 2 ,  F e 3 O 4 @ S i O 2 - P C , 

SCMNPs@ThSCa, SCMNPs@ThSCa-BPy, and 

SCMNPs@BPy-SO3H is shown in Figure 1. In 

the spectrum of Fe3O4, the characteristic bands 

of the stretching vibration of the Fe-O-Fe and 

O-H were found at 575 cm-1 and 3386 cm-1, re-

spectively. The FT-IR spectrum of the 

Fe3O4@SiO2 showed associated absorption 

bands at 968 and 1065 cm-1 due to Si-O-Si and 

Si-OH stretching vibrations, respectively. The 

FT-IR spectrum of the Fe3O4@SiO2-PC exhibits 

a peak at 2978 cm-1 that is indexed to the C-H 

stretching vibration mode. The C=S and N-H 

stretching vibrations of the SCMNPs@ThSCa 

could be observed at around 2334 cm-1 and 

3312 cm-1, respectively. Additionally, the FT-IR 

spectrum shows a strong band at 1456 and 

1638 cm−1 due to the C=C and C=N stretching 

vibrations, respectively, revealing the function-

alization of the magnetic cores with organic 

groups. In the case of SCMNPs@BPy-SO3H, the 

bands at 1033 and 1142 cm-1 can be attributed 

to SO3H stretching vibration mode. 
 

3.2 Thermal Analysis of SCMNPs@BPy-SO3H.  

Thermogravimetric analysis spectrum of 

Fe3O4 ,  Fe3O4@SiO2 ,  Fe3O4@SiO2-PC, 

SCMNPs@ThSCa, SCMNPs@ThSCa-BPy and 

SCMNPs@BPy-SO3H was surveyed using TGA 

under nitrogen atmosphere at 10 ℃/min of 

heating rate. The results are shown in Figure 

2. In the TGA graph of all of the samples, a 

weight loss of about 3% observed that is related 

to desorption of physically adsorbed water and 

dehydration of the surface hydroxyl groups. 

The TGA of  Fe 3O 4@SiO 2-PC and 

SCMNPs@ThSCa undergoes other weight loss 

stages, which can be seen in the range between 

330-460 °C, probably related to the elimination 

of attached 3-chloropropyltriethoxysilane (PC) 

and thiosemicarbazide (ThSCa) molecules. The 

TGA curves of SCMNPs@ThSCa-BPy and 

SCMNPs@BPy-SO3H show distinct stages of 

weight loss at temperatures within the range of 

330-450 ℃, possibly attributed to the decompo-

sition of attached functional groups to the 

Fe3O4 surface. 

 

3.3 VSM Analysis of SCMNPs@BPy-SO3H 

To study the magnetic properties of the 

Fe3O4, Fe3O4@SiO2, SCMNPs@ThSCa, and 

SCMNPs@BPy-SO3H, magnetic measurements 

were done at room temperature by a vibrating 

sample magnetometer (VSM). As shown in 

VSM patterns (Figure 3), the saturation mag-

netization (Ms) of the Fe3O4 is 64.79 emu.g-1, 

which is higher than Fe3O4@SiO2 (52.34  

emu.g-1) and SCMNPs@ThSCa (48.65 emu.g-1). 

This significant decrease in the Ms confirms 

the formation of the silica shell around the 

MNPs and organic groups on the surface of the 

SCMNPs. However, the saturation magnetiza-

tion of SCMNPs@BPy-SO3H was 37.68 emu.g-1, 

which is lower than that of SCMNPs. This ad-

ditional decrease in the value of Ms is due to 

the formation of organic and SO3H groups on 

the surface of the Fe3O4. 

 

3.4 EDX Analysis of SCMNPs@BPy-SO3H 

The presence of functionalized groups on 

the surface of magnetic nanoparticles was also 

confirmed by the energy-dispersive X-ray spec-

troscopy (EDX) spectra showing the presence of 

Fe, C, N, S, Si, and O elements in the 

Figure 1. FTIR spectra of Fe3O4, Fe3O4@SiO2, 

Fe3O4@SiO2-PC, SCMNPs@ThSCa, 

SCMNPs@ThSCa-BPy, and SCMNPs@BPy-SO3H. 
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SCMNPs@BPy-SO3H, as shown in Figure 4. 

 

3.5 XRD Analysis of SCMNPs@BPy-SO3H 

The crystalline nature and surface state of 

the Fe3O4 and SCMNPs@BPy-SO3H were con-

firmed by powder X-ray diffraction (XRD) 

(Figure 5). As shown, six characteristic peaks 

at 2θ = 31.56°, 36.26°, 42.75°, 53.25°, 56.87°, 

and 63.25° were observed in the XRD pattern of 

the Fe3O4, which are revealed to the reflection 

planes of (220), (311), (400), (422), (511), and 

(440) with crystalline cubic spinel structure (in 

a good agreement with the XRD data of Joint 

Committee on Powder Diffraction Standards 

No. 19-0629). The XRD-diffraction pattern of 

the SCMNPs@BPy-SO3H was similar to the 

pure Fe3O4. Because of this analysis, the 

SCMNPs@BPy-SO3H had been prepared suc-

cessfully without any phase change in Fe3O4. 

3.6 SEM Analysis of SCMNPs@BPy-SO3H 

The size and morphology of the Fe3O4 (A) 

and SCMNPs@BPy-SO3H (B) were investigat-

ed to determine the variations in the surface of 

the magnetic nanoparticles by the scanning 

electron microscopy (SEM) analysis. As shown 

in Figure 6, prepared magnetic nanoparticles 

in all the samples have nearly a spherical 

structure indicating the nanoparticles with a 

large surface area. In this research, we report-

ed our outcomes for the efficient and rapid 

preparation of pyrano[2,3-c]pyrazole and 2-

amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-

one derivatives using SCMNPs@BPy-SO3H as 

an efficient and reusable heterogeneous mag-

netic nanocatalyst under solvent-free condi-

tions (Scheme 2). 

Firstly, the catalytic efficiency of the 

SCMNPs@BPy-SO3H was studied in the syn-

thesis of pyrano[2,3-c]pyrazole derivatives. To 

discover the appropriate reaction conditions, a 

one-pot four-component condensation of hydra-

zine hydrate (1 mmol), acetoacetic ester (1 

mmol), 4-chlorobenzaldehyde (1 mmol), and 

malononitrile (1 mmol) was selected and tested 

as a model reaction under different conditions. 

We used various solvents, such as: H2O, EtOH, 

MeOH, CHCl3, CH3CN, CH2Cl2, and acetone 

under reflux conditions (Table 1, entries 1-7). 

These observations illustrated that the reac-

tion performed in the absence of solvent serves 

as the best result according to the principles of 

green chemistry for this synthesis (Table 1, en-

try 12). Although, EtOH with respect to having 

a polarity compared to other nonpolar solvents 

used in this reaction gave a moderate yield of 

the product (Table 1, entry 2). For the synthe-

sis completion, different amounts of the 

Figure 2. TGA graphs of Fe3O4, Fe3O4@SiO2, 

F e 3 O 4 @ S i O 2 - P C ,  S C M N P s @ T h S C a , 

SCMNPs@ThSCa-BPy, and SCMNPs@BPy-SO3H. 

Figure 3. VSM patterns of Fe3O4, Fe3O4@SiO2, 

SCMNPs@ThSCa, and SCMNPs@BPy-SO3H. 

Figure 4. EDX spectra of SCMNPs@BPy-

SO3H. 
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SCMNPs@BPy-SO3H (5, 8, 12, 16, 20, and 25 

mg) examined that 20 mg of the nanocatalyst is 

sufficient (Table 1, entries 8-13). By increasing 

and decreasing the catalyst concentration, the 

final yields of the product were decreased to 92, 

86, 75, 64, and 59%, respectively (Table 1, en-

tries 8-11 and 13). To define the role of temper-

ature as a factor accelerating the reaction, the 

model reaction was done using temperatures 

ranging from 25 to 100 °C (Table 1, entries 12 

and 14-19). It was found that reaction in 80 °C 

led to a better yield of the desired product than 

others (Table 1, entry 12). Finally, when the 

model reaction was done in the presence of 20 

mg of Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2-PC, 

SCMNPs@ThSCa, and SCMNPs@ThSCa-BPy 

under the optimized conditions, the final yields 

of the products were 78, 73, 68, 81, and 85, re-

spectively (Table 1, entries 20-24). 

In order to establish the efficiency of the op-

timum conditions (Table 1, Entry 12) in previ-

ously reported reactions, we surveyed the gen-

erality of this procedure with both electron-

withdrawing and electron-donating aldehydes 

and the results are depicted in Table 2. All the 

investigated aldehydes afforded corresponding 

products in excellent yields and short reaction 

times. 

Next, the catalyst efficiency of 

SCMNPs@BPy-SO3H was surveyed in the one-

pot three-component condensation of                 

4 - h y d r o x y c o u m a r i n  ( 1  m m o l ) ,                             

4-chlorobenzaldehyde (1 mmol), and  malono-

nitrile (1 mmol) for the preparation of 2-amino-
Figure 5. The XRD patterns of Fe3O4 and 

SCMNPs@BPy-SO3H. 

Figure 6. SEM image of Fe3O4 (A) and SCMNPs@BPy-SO3H (B). 

 

Scheme 2. Synthesis of pyrano[2,3-c]pyrazole and 2-amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-one 

derivatives using SCMNPs@BPy-SO3H. 
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4-(4-chlorophenyl)-5-oxo-4H,5H-pyrano[3,2-

c]chromene-3-carbonitrile. Optimization of the 

above-mentioned model reaction was performed 

under different conditions and the outcomes 

are presented in Table 3. To investigate the ef-

fect of various solvents, such as: H2O, EtOH, 

MeOH, CHCl3, CH3CN, CH2Cl2, acetone, and 

solvent-free conditions (Table 3, entries 1-8), 

the model reaction was done in the presence of 

these solvents and the best outcome was 

achieved in the absence of solvent (Table 3, en-

try 8). To illustrate the importance of tempera-

ture in the model reaction, the reaction was 

performed under different temperatures rang-

ing from 25 to 100 °C (Table 3, entries 8 and 9-

14). The yields of the desired product were in-

creased and the reaction times were decreased 

with increased temperature up to 80 °C (Table 

3, entries 8 and 9-12). In addition, the results 

show that the use of 90 and 100 °C led to slight 

decreases compared to 80 °C in terms of the 

product yields (Table 3, entries 13-14). To dis-

cover the best amounts of catalyst on the model 

reaction, organic transformation was done in 

the presence of 5, 8, 12, 15, 20, and 25 mg of 

SCMNPs@BPy-SO3H (Table 3, entries 8 and 

15-20) and the highest yield of the product was 

achieved in the presence of 15 mg of catalyst 

(Table 3, entry 8). Also, when the model reac-

tion was done in the presence of 15 mg of 

Yield (%)b Time (min) Temperature (°C) Catalyst (mg) Solvent Entry 

64 50 Reflux 20 H2O 1 

75 35 Reflux 20 EtOH 2 

56 60 Reflux 20 MeOH 3 

49 80 Reflux 20 CHCl3 4 

51 75 Reflux 20 CH3CN 5 

45 80 Reflux 20 CH2Cl2 6 

54 75 Reflux 20 acetone 7 

59 10 80 5 --- 8 

64 10 80 8 --- 9 

75 10 80 12 --- 10 

86 10 80 16 --- 11 

94 10 80 20 --- 12 

92 10 80 25 --- 13 

42 75 25 20 --- 14 

56 45 50 20 --- 15 

69 25 60 20 --- 16 

87 15 70 20 --- 17 

94 10 90 20 --- 18 

93 10 100 20 --- 19 

78 10 80 Fe3O4 (20) --- 20 

73 10 80 Fe3O4@SiO2 (20) --- 21 

68 10 80 Fe3O4@SiO2-PC (20) --- 22 

81 10 80 SCMNPs@ThSCa (20) --- 23 

85 10 80 SCMNPs@ThSCa-BPy (20) --- 24 

aReaction conditions: hydrazine hydrate (1 mmol), acetoacetic ester (1 mmol), 4-chlorobenzaldehyde (1 mmol), malononitrile (1 

mmol), and required amount of  the catalysts. bThe yields refer to the isolated product. 

Table 1. Optimization of one-pot four-component condensation of hydrazine hydrate, acetoacetic ester, 

4-chlorobenzaldehyde, and malononitrile under different conditions.a 
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M.P (Lit) 

(°C) 

M.P(Obsd) 

(°C) 

Yield 

(%)b 

Time 

(min) 
Product Aldehyde (3) Product Entry 

244-24556 239-242 91 12 

 

 

5a 1 

233-23456 230-232 94 10 

 

 

5b 2 

230-23256 229-231 90 15 

 

 

5c 3 

222-22457 221-223 93 12 

 

 

5d 4 

19158 197-199 92 15 

 

 

5e 5 

19558 201-203 95 12 

 

 

5f 6 

240-24259 209-211 94 15 

 

 

5g 7 

259-26134 253-255 90 20 

 

 

5h 8 

179-18059 192-194 93 15 

 

 

5i 9 

Table 2. Synthesis of pyrano[2,3-c] pyrazoles catalyzed by SCMNPs@BPy-SO3H.a 
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M.P (Lit) 

(°C) 

M.P(Obsd) 

(°C) 

Yield 

(%)b 

Time 

(min) 
Product Aldehyde (3) Product Entry 

223-22661 221-224 91 20 

 

 

5j 10 

248-24920 245-247 87 25 

 
 

5k 11 

234-23660 239-241 89 25 

 
 

5l 12 

260-26334 257-259 92 15 

 
 

5m 13 

17458 179-181 94 15 

 

 

5n 14 

19558 199-201 91 15 

 
 

5o 15 

170-17256 182-185 92 15 

 

 

5p 16 

19162 217-219 90 20 

 
 

5q 17 

223-22520 221-224 91 20 

 
 

5r 18 

Table 2. … (continued) 

aReaction conditions: hydrazine hydrate (1 mmol), acetoacetic ester (1 mmol), aldehyde (1 mmol), malononitrile (1 mmol), and 

required amount of  the catalysts. bThe yields refer to the isolated product. 
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Fe3O4 ,  Fe3O4@SiO2 ,  Fe3O4@SiO2-PC, 

SCMNPs@ThSCa, SCMNPs@ThSCa-BPy, and 

SCMNPs@BPy-SO3H under the optimized con-

ditions, the final yields of the product were 81, 

75, 73, 84, and 87, respectively (Table 1, entries 

21-25). After optimization of the reaction condi-

tions for the model reaction, various 2-amino-3-

cyano-pyrano[3,2-c]chromen-5(4H)-ones were 

prepared with an array of aromatic aldehydes 

bearing either electron-withdrawing or elec-

tron-donating substituents by this procedure 

(Table 4). 

The plausible mechanism for the synthesis 

of pyrano[2,3-c]pyrazole and pyrano[3,2-

c]chromen derivatives is shown in Scheme 3. In 

both cases, benzylidenemalononitrile 8 was 

achieved because of a Knoevenagel condensa-

tion between activated carbonyl group of alde-

hyde 3 by the SCMNPs@BPy-SO3H nanocata-

lyst and malononitrile 4. In the case of pyra-

no[2,3-c]pyrazole derivatives, hydrazine hy-

drate 1 reacted with activated carbonyl group 

of acetoacetic ester 2 by the  catalyst to form 

pyrazolone 9 via condensation reaction. After 

that, activated benzylidenemalononitrile 8 by 

the catalyst condense with 4-hydroxycoumarin 

6 and pyrazolone 9 through Michael addition. 

The obtained 10 and 11 intermediates from 

these additions undergo cyclization and tau-

tomerization (12 and 13) to develop the desired 

products 5 and 7. 

The  re cyc la b i l i ty  po ten t i a l  o f 

SCMNPs@BPy-SO3H was tested for the syn-

thesis of 6-amino-4-(4-chlorophenyl)-3-methyl-

1,3a,4,7a-tetrahydropyrano[2,3-c]pyrazole-5-

carbonitri le (a)  and 2-amino-4-(4-

chlorophenyl) -5-oxo-4H ,5H -pyrano[3,2-

c]chromene-3-carbonitrile (b) under the opti-

mized conditions. Upon detection of reaction 

completion of the appeared product stain on 

the TLC, the catalyst was filtered out from the 

reaction solution using an appropriate magnet-

Yield (%)b Time (min) Temperature (°C) Catalyst (mg) Solvent Entry 

73 40 Reflux 15 H2O 1 

81 35 Reflux 15 EtOH 2 

70 45 Reflux 15 MeOH 3 

59 60 Reflux 15 CHCl3 4 

54 60 Reflux 15 CH3CN 5 

48 60 Reflux 15 CH2Cl2 6 

52 60 Reflux 15 acetone 7 

97 15 80 15 --- 8 

42 70 25 15 --- 9 

76 55 50 15 --- 10 

84 45 60 15 --- 11 

91 20 70 15 --- 12 

96 15 90 15 --- 13 

93 15 100 15 --- 14 

62 15 80 5 --- 15 

71 15 80 8 --- 16 

89 15 80 12 --- 17 

95 15 80 20 --- 19 

91 15 80 25 --- 20 

81 15 80 Fe3O4 (15) --- 21 

75 15 80 Fe3O4@SiO2 (15) --- 22 

73 15 80 Fe3O4@SiO2-PC (15) --- 23 

84 15 80 SCMNPs@ThSCa (15) --- 24 

87 15 80 SCMNPs@ThSCa-BPy (15) --- 25 

Table 3. Optimization of one-pot three-component condensation of 4-hydroxycoumarin, 4-

chlorobenzaldehyde, and malononitrile, under different conditions.a 

aReaction conditions: 4-hydroxycoumarin (1 mmol), 4-chlorobenzaldehyde (1 mmol), malononitrile (1 mmol), and required 

amount of  the catalysts. bThe yields refer to the isolated product. 
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M.P (Ref) 

(°C) 

M.P(Obtd) 

(°C) 

Yield 

(%)b 

Time 

(min) 
Product Aldehyde (3) Product Entry 

256-25863 251-253 95 25 

 
 

7a 1 

260-26263 254-256 97 18 

 
 

7b 2 

260-26264 269-271 95 25 

 
 

 7c 3 

250-25264 242-244 94 15 

 
 

7d 4 

244-24665 238-240 95 15 

 
 

7e 5 

263-26566 259-261 97 15 

 
 

7f 6 

265-26763 260-262 92 25 

 
 

7g 7 

259-26167 249-252 96 20 

 
 

7h 8 

236-23868 235-237 95 25 

 
 

7i 9 

242-24469 232-235 95 30 

 
 

7j 10 

Table 4. Synthesis of 2-amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-ones using SCMNPs@BPy-SO3H 

as a catalyst.a 
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M.P (Ref) 

(°C) 

M.P(Obtd) 

(°C) 

Yield 

(%)b 

Time 

(min) 
Product Aldehyde (3) Product Entry 

221-22365 225-227 95 35 

 
 

7k 11 

260-26263 262-264 93 25 

 
 

7l 12 

252-25463 250-252 92 25 

 
 

7m 13 

228-23063 229-232 92 30 

 
 

7n 14 

253-25470 257-259 96 25 

 
 

7o 15 

Table 4. … (continued) 

aReaction conditions: 4-hydroxycoumarin (1 mmol), aldehyde (1 mmol), malononitrile (1 mmol), and required amount of  the cata-

lysts. bThe yields refer to the isolated product. 
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Scheme 3. A plausible mechanism for the preparation of pyrano[2,3-c]pyrazole 5 and pyrano[3,2-

c]chromen 7 derivatives catalyzed by SCMNPs@BPy-SO3H. 
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ic field. The recovered SCMNPs@BPy-SO3H na-

noparticles were rinsed several times with 

water/ethanol (1:1), oven‐dried at 50 °C for 24 

h, and reused for six runs with a slight de-

crease in catalytic activity (Figure 7). 

To assess the efficiency of this catalytic sys-

tem, the achieved outcome for the synthesis of 

6-amino-4-(4-chlorophenyl)-3-methyl-1,3a,4,7a-

tetrahydropyrano[2,3-c]pyrazole-5-carbonitrile 

and 2-amino-4-(4-chlorophenyl)-5-oxo-4H,5H-

pyrano[3,2-c]chromene-3-carbonitrile deriva-

tives by this strategy was compared with those 

of the previously reported homogeneous and 

heterogeneous catalysts in the literature. As 

shown in Table 5, the use of SCMNPs@BPy-

SO3H leads to an improved procedure in terms 

of reaction time, catalyst amount, product 

yield, and compatibility with the environment. 

4. Conclusion 

We described an effective, easy, and eco-

friendly strategy for a wide range of biological-

ly and pharmacologically interesting diverse 

functionalized pyrano[2,3-c]pyrazole and 2-

amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-

one derivatives in the presence of an environ-

mental friendly and reusable heterogeneous 

magnetic nanocatalyst (SCMNPs@BPy-SO3H) 

via an eco-friendly multicomponent reaction 

under solvent-free conditions. This strategy 

has various merits, including lower loading of 

the catalyst, the usage of a green catalyst, easy 

work-up, no organic solvent, and excellent 

yields. 

 

Figure 7. Recycling of SCMNPs@BPy-SO3H in the synthesis of 6-amino-4-(4-chlorophenyl)-3-methyl-

1,3a,4,7a-tetrahydropyrano[2,3-c]pyrazole-5-carbonitrile (a) and 2-amino-4-(4-chlorophenyl)-5-oxo-

4H,5H-pyrano[3,2-c]chromene-3-carbonitrile (b) derivatives. 

 
(entries 1-6) 

  

 

 
(entries 7-12) 

Entry Catalyst and Conditions 
Reaction 

time (min) 

Yield 

(%)b 
Ref. 

1 Ba(OH)2/ H2O/Reflux 90 93 [38] 

2 CTACl/H2O/90 oC 240 88 [43] 

3 MorT/EtOH:H2O/Reflux 540 92 [37] 

4 γ-Alumina/H2O/Reflux 35 90 [32] 

5 Isonicotinic acid/---/85 oC 10 90 [34] 

6 SCMNPs@BPy-SO3H/---/80 oC 20 94 This work 

7  CuO nanoparticles/H2O/100 oC 6 93 [71] 

8 [Sipim]HSO4/100 oC 30 90 [72] 

9 ZnO NPs/EtOH/Reflux 10 80 [73] 

10 SDS/H2O/60 oC 150 88 [63] 

11 Nano Al2O3/EtOH 300 89 [74] 

12 SCMNPs@BPy-SO3H/---/80 oC 15 97 This work 

Table 5. Comparison of the current strategy with other reported procedures for synthesizing 6-amino-

4-(4-chlorophenyl)-3-methyl-1,3a,4,7a-tetrahydropyrano[2,3-c]pyrazole-5-carbonitrile and 2-amino-4-(4-

chlorophenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile derivatives. 
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