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Abstract

The paper reports the development of ZnO-MgAl layered double hydroxides as an adsorbent-photo
catalyst to remove the dye pollutants from aqueous solution and the experiments of photo catalytic
study were designed and modeled by response surface methodology (RSM) and artificial neural
network (ANN). The co-precipitation and urea methods were used to synthesize the ZnO-MgAl layered
double hydroxides and FT-IR, XRD and SEM analysis were done for characterization of the
catalyst.The performance of the ANN model was determined and showed the efficiency of the model in
comparison to the RSM method to predict the percentage of dye removal accurately with determination
coefficient (R2) of 0.968. The optimized conditions were obtained as follows: 600 °C, 120 min, 0.05 g and
20 ppm for the calcination temperature, irradiation time, catalyst amount and dye pollutant
concentration, respectively. Copyright © 2016 BCREC GROUP. All rights reserved
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1. Introduction ment specifically in aqueous milieu [3]. In the
textile industry, dyeing process generated a
large volume of wastewater containing most
unreacted colored dyestuffs [4]. The percentage
of even a small amount of dye in water is
highly visible and affects the water transpar-
ency and gas solubility of water bodies [5]. A lot
of researches and studies were done on adsorp-
tion of dye pollutants like: activated carbon,
zeolites, etc. But all of them were like a medi-
ate that transfer pollution from one medium to
another [2]. Beside these materials solve the
existing problem but causes a bigger insoluble

One of the most significant current environ-
mental problems is wastewater treatment and
depuration [1]. This is a very difficult task due
to the variety of contaminants present in such
wastes [2]. In recent year’s dyes and pigments
as a wastewater from food and textile indus-
tries took a lot of attention to hinder their re-
leasing to the environment and degradation of
them because of the adverse effect on environ-
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from a wastewater treatment plant (WWTP),
taking also into consideration that recalcitrant
organic compounds in wastewaters are insuffi-
ciently removed by conventional chemical and
biological treatments, advanced oxidation proc-
esses (AOPs) are being studied as an alterna-
tive to traditional methods [3,8,9].

AOPs are particularly effective as methods
for removing organic pollutants from water be-
cause they can destroy hazardous contami-
nants, and not simply transfer them to another
phase as do conventional treatment techniques
[3]. AOPs are based on the generation of highly
reactive species, such as hydroxyl radicals
(*OH) that can oxidize a broad range of pollut-
ants, such as phenols, pesticides, pharmaceuti-
cals and dyes quickly and non-selectively [10-
12]. Layered double hydroxides (LDHs), also
known as hydrotalcite-like materials or anionic
clays, are natural or synthetic mixed metal hy-
droxides relatively simple and cheap to prepare
on both laboratory and industrial scales [13].
LDHs possessed a layered structure of general
formula [MII)1-xMJII)x(OH)z2]**(Arym), where
M2+ and M3+ are divalent (Mg2+, Fe2t, Co2+,
Cu?+, Ni2*, Zn2?*) and trivalent (Al3+, Cr3*, In3+,
Mns3+, Ga3*, Fe3*) metal ions, respectively; A is
an intercalate anion (COs2-, SO42-, NOs-, F-,
CI"). The positive charge generated by the sub-
stitution of a part of the divalent cations by tri-
valent cations in the brucite-like layers was
compensated by the presence of anions in the
interlayer space [14].

LDHs has exhibited its promising applica-
tion in the adsorption of dye anions due to its
high surface area and the anion exchange prop-
erty of its host layers [8]. Most of the dyes and
pigments have at least an azo band (N=N) in
their molecular structure that can be used to
enter to the interlayer space of layered double
hydroxide. But as mention above these kind of
adsorptive material can be used as a temporary
solution [4,15]. ZnO-MgAl layered double hy-
droxides show a promising way in adsorption
and photo catalytic degradation of organic pol-
lution [16]. ZnO-MgAl layered double hydrox-
ide’s application enhances by their capability in
dye degradation by using a low energy irradia-
tions like UV-C and visible light [17,18]. This
property increase a lots of attention for using
them as a promising method in both adsorption
and photo catalytic degradation [17,19].

In order to enhance photo catalytic degrada-
tion design of experiments was done by select-
ing four effective factors in dye degradation us-
ing ZnO-MgAl layered double hydroxides
[20,21]. Photo catalytic oxidation efficiency is
dependent on a number of parameters such as

the reactor configuration, UV light intensity,
initial analyte concentration, reaction time, pH,
mass of catalyst, flow rate, etc. [3]. To optimize
the effective parameters with the minimum
number of experiments, the application of ex-
perimental design methodologies can be useful
[4]. Response Surface Methodology (RSM) and
Artificial Neural Networks (ANNs) are power-
ful mathematical methods suitable for model-
ing and optimizing chemical reactions and/or
industrial processes [22]. In fact, these model-
ing techniques approximate the functional rela-
tionships between input variables
(experimental operational parameters) and the
output (response) of the process using experi-
mental data [23]. Afterwards, the models are
used to estimate the optimal settings of input
variables to maximize or minimize the response
[24, 25]. RSM and ANNs have been widely ap-
plied to the modeling and optimization of photo
catalytic oxidation processes related to the deg-
radation of individual pollutants such as dyes,
pesticides, pharmaceuticals and wastewater
streams such as dyestuff, power station efflu-
ents, etc. [26-32,50].

To the best of our know-ledge, there are no
studies dealing with the comparison of RSM
and ANN modeling methods for the optimiza-
tion of photo catalytic degradation of organic
dyes like Methyl Orange (MO) from aqueous
solution [34]. The aim of this work was to study
of the photo catalytic degradation of dye pollut-
ants from aqueous solutions over eco-friendly
Zn0O-MgAl layered double hydroxide in more
details by gathering some information from ar-
tificial neural network (ANN) and response
surface methodology as tools. In order to save
the time and costs of study the experiments
were designed by Box-Behnken of response sur-
face methodology in order to reduce the number
of experiments. Artificial neural network
(ANN) was used as a black box tool to model
and optimize the photo catalytic system. The
synthesized LDH photo catalyst was character-
ized by XRD, FTIR, and SEM.

2. Materials and Method

All chemicals used in this study were of ana-
lytical grade and used without any purification.
Mg(NO3)2.6H20, AI(NO3).9H20, Urea, Zinc ace-
tate, sodium carbonate, methyl orange and so-
dium hydroxide were obtained from Merck
(Darmstadt, Germany).

2.1. Sample preparation

The Mg-Al LDHs (molar ratios Mg/Al = 2)
was prepared by co-precipitation of magnesium
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and aluminum salts from homogeneous
solution. A typical synthetic procedure is as
follows: 6.4 g Mg(NO3)2.6H2O and 4.6 g
AI(NO3)3.9(H20) dissolved in 100 mL of
deionized water under vigorous stirring. After
10 min, solution B contain 1.125 g Na2CO3 and
4 g NaOH were added drop wise in the above
homogenous solution, and kept the mixture
solution under constant magnetic stirring for 3
min at room temperature. Then the solid was
separated by vacuum filter and washed
thoroughly with water and finally dried
overnight at 70 oC.

For synthesis of ZnO-MgAl layered double
hydroxides, (CH3COO0)2Zn 2H20, CO(NHz)2 and
the prepared MgAl-LDHs were used as the raw
materials. In order to obtain the precipitation
of metal hydrous oxides with uniform size, urea
was used as a basic precipitating agent. The
urea aqueous solution release hydroxide and
carbon dioxide slowly upon the heating over 60
°C, the hydroxide promotes the hydrolysis of
the metal salt solution is generally called
homogeneous precipitation.

The 3 g (CH3C0O0)2Zn.2H20 mixed 10 g urea
was dissolved in 100 mL of the distilled water
under room temperature to a clear solution. A
3:1 mass ratio of ZnO/MgAl layered double
hydroxides selected because of the best removal
percentage in the same condition [11,17]. So,
the 1 g MgAl layered double hydroxide
synthesized before, added to suspension
containing of zinc salt and urea and vigorously
stirred for several hours in order to make the
solution to be dispersed evenly. Then, the
suspension was heated to 60 °C and kept at the
temperature for about 3 h under magnetic
stirring in order to gain a uniform solution. The
product was then filtered by vacuum filter and
washed several times by deionized water to
purify the crystalline.

For preparation of the methyl orange
solutions with different concentrations in ppm
scale mg of the methyl orange was added to
1000 mL of distilled water and was vigorously
stirred to gain a uniform Dye solution with
different concentrations.

2.2. Photo catalyst characterization

X-ray diffraction (XRD) studies were carried
out on a Siemens D500 diffract meter working
with Ka line of copper (1=0.154 nm).
Measurement of the samples was carried out in
the range 20 of 2.5-50°. The mean crystal sizes
were estimated using the Scherer equation,
D=KM\/f3 cos 0, where K=0.89, A =0.15418 nm, £
is the half peak width of the X-ray reflection
and 0 is the diffraction angle. Infrared (IR)
spectra were recorded with a Bruker 27 FT-IR
spectrometer using the Universal ATR
Accessory in the range from 3650 to 400 cm-!
with 4 cm-! resolution. Furthermore, the shape
and size of the synthesized particles were
determined via scanning electron microscopy
(SEM) by Hitachi s-4200 instrument with pre-
coating samples with gold.

2.3. Determination of percentage of the
dye pollution from the aqueous solution

In order to testify just photo catalytic
property batch mode selected for dye
degradation from aqueous solution using ZnO-
MgAl layered double hydroxide. A sample of
the catalyst with amounts that were designed
by Minitab 17 was added to the dye containing
solution in room temperature and vigorously
stirring. After 20 minutes adsorbed dye by
MgAl-LDH was determined by UV/visible
spectrophotometer. Then the suspension was
irradiated for specified time (as planned by
Minitab 17) under UV-C (15 W) in photo

Figure 1. Scheme of the photo reactor used in this experiment
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reactor. The photo reactor with vigorous
stirring system as shown in Figure 1 was used
to investigate the photo catalytic performance
of the synthesized photo catalyst during the
experiment. The volume of reactor was 50 ml of
Dye solution with different concentration. The
lames used in this experiment were 15 W-UV-C
lamps made in Philips (Germany).

Then the suspension was centrifuged and
eventually analyzed by UV/visible
spectrophotometer (TG 80+) made in United
Kingdom. The amount of dye removal (%) was
calculated in Equation (1).

Amount of dye removal (%) = (Co-C))/Cyx100 (1)

where Cy is the initial concentration after
absorption (mm) of the dye solution and C; is
the concentration after specified time. The
ranges of the variables for design of the
experiment and modeling are listed as follows:
(a) calcination temperature of 300-600 °C; (b)
catalyst amount: 0.01-0.05 g; (¢c) dye
concentration of 20-60 ppm; (d) time of 30-120
min.

2.4. Experimental design, modeling,
optimization by Response Surface
Methodology (RSM) and Artificial Neural
Networks (ANNs)

To find the optimum conditions for
degradation of MO, a Box Behnken design
(BBD) was adopted to evaluate the combined
effect of four factors (variables), i.e. calcination
temperature, the amount of catalyst,
irradiation time and dye pollutant
concentration. For four variables (n = 4) and
two levels (high (+) and low (-)) and replicate
option, the total number of experiments was 54
(shown in Table 1). The data set obtained from
BBD was used for the optimization of the
response of MO photo catalytic degradation
percentage. The Response Surface Methodology
(RSM) and Artificial Neural Networks (ANNs)
were used to fit experimental data. In the RSM,
the responses can be simply related to chosen
factors, by first-order or second-order
polynomial models. The first-order model uses
a low-order polynomial model, which 1is
appropriate for describing a flat surface,
according to the Equation (2).

k
y= ﬁoZﬂixi +&
= @)

where y is the predicted response, [y is the
constant term, f; represents the coefficients of
the linear parameters, x; represents the
variables and ¢ is the random error.

If interaction terms are included, the first-
order model can then be represented as follows:

k k
y= ﬂoZﬁixi + Zﬁixi +é
i=1 1<i<j

3

where f; represents the coefficients of the
interaction parameters x; and xj. A second-order
model may be studied in order to locate the
optimum point. A second-order model is given in
Equation (4).

k k k
¥ =By Bixi+ ) B xip + ) Byxixj+e
i1 i-1 1<i<)

(4)

where fii represents the coefficients of the
quadratic parameter [26, 27, 30, 31].

Statistical analysis was performed using the
software package Minitab v.17 and a regression
model was proposed. Analysis of variance
(ANOVA) was performed based on the proposed
model to find the interaction between the
process variables and the response. The quality
of the fit for the polynomial model was
expressed with the coefficient of determination
(R2, R24.), and statistical significance was
checked by the F-value, P-value and adequate
precision in the same program. Model terms
were selected or rejected based on the
probability value with 95% confidence level (P >
0.05). Finally, three-dimensional response
surface plots and contour plots were drawn in
order to visualize the individual and the
interaction effects of the independent variables
on MO degradation [35,36].

On the other hand, ANNs are computational
model programs which can approximate
complex nonlinear relationships existing
between independent (ANN input) and
dependent (ANN output) variables to an
arbitrary degree of accuracy [37]. These
relationships are achieved through learning (or
training) of data network. The neural network
structure is constructed from hundreds of single
units, called artificial neurons, which are
connected with coefficients (weights). The
neurons are sorted in an input layer, hidden
layers (one or more) and an output layer and
each of them has weighted inputs, activation
function and one output. Neural network
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Table 1. The 4-factor Box Behnken design matrix (independent variables and their coded and actual
levels; calcination temperature (°C), dye concentration (ppm), catalyst amount (mg) and irradiation
time (min) and the experimental results (degradation of MO (%)) from aqueous solution

Run Calcin-Temp Dye LDH Time Experimental
1 0(450) 0(40) 0(0.03) 0(85) 75.9824
2 0(450) 0(40) 1(0.05) 1(120) 68.9426
3 0(450) 0(40) -1(0.01) 1(120) 57.9137
4 0(450) 1(60) 0(0.03) -1(30) 51.9625
5 0(450) 0(40) 0(0.03) 0(85) 71.6591
6 1(600) 0(40) 1(0.05) 0(85) 86.9731
7 0(450) 0(40) 1(0.05) -1(30) 56.9154
8 -1(300) -1(20) 0(0.03) 0(85) 40.6249
9 0(450) 1(60) -1(0.01) 0(85) 50.8364
10 -1(300) 0(40) 0(0.03) -1(30) 31.021
11 0(450) 0(40) 0(0.03) 0(85) 76.4927
12 -1(300) 0(40) -1(0.01) 0(85) 35.8591
13 0(450) 1(60) 0(0.03) -1(30) 51.9628
14 0(450) 1(60) 0(0.03) 1(120) 61.3246
15 1(600) 0(40) -1(0.01) 0(85) 65.8572
16 0(450) 0(40) -1(0.01) -1(30) 48.9274
17 0(450) 0(40) -1(0.01) -1(30) 45.5628
18 -1(300) 0(40) 0(0.03) -1(30) 31.6821
19 0(450) -1(20) 0(0.03) -1(30) 58.6904

20 -1(300) 1(60) 0(0.03) 0(85) 37.2109
21 0(450) 0(40) -1(0.01) 1(120) 57.9319
22 0(450) 0(40) 0(0.03) 0(85) 71.7439
23 1(600) 0(40) 0(0.03) -1(30) 63.8276
24 -1(300) 0(40) 1(0.05) 0(85) 37.848

25 -1(300) -1(20) 0(0.03) 0(85) 40.6205
26 0(450) 0(40) 1(0.05) -1(30) 44.6852
27 0(450) -1(20) 0(0.03) -1(30) 50.7348
28 1(600) -1(20) 0(0.03) 0(85) 85.251

29 0(450) -1(20) 0(0.03) 1(120) 77.2965
30 0(450) 0(40) 1(0.05) 1(120) 68.5201
31 0(450) 1(60) 1(0.05) 0(85) 52.4682
32 0(450) 0(40) 0(0.03) 0(85) 68.3965
33 1(600) 0(40) 0(0.03) 1(120) 91.2057
34 1(600) 0(40) 0(0.03) 1(120) 90.4195
35 0(450) 1(60) 1(0.05) 0(85) 52.4682
36 1(600) 0(40) 0(0.03) -1(30) 63.8276
37 1(600) 0(40) -1(0.01) 0(85) 68.2672
38 0(450) 0(40) 0(0.03) 0(85) 75.6387
39 0(450) -1(20) 1(0.05) 0(85) 78.0918
40 0(450) -1(20) 1(0.05) 0(85) 82.1076
41 1(600) 1(60) 0(0.03) 0(85) 80.4792
42 0(450) 1(60) 0(0.03) 1(120) 52.6717
43 0(450) -1(20) -1(0.01) 0(85) 60.3109
44 -1(300) 0(40) -1(0.01) 0(85) 30.2014
45 0(450) 1(60) -1(0.01) 0(85) 50.8369
46 -1(300) 0(40) 0(0.03) 1(120) 45.6325
47 1(600) 0(40) 1(0.05) 0(85) 70.5091
48 -1(300) 1(60) 0(0.03) 0(85) 43.6502
49 0(450) -1(20) 0(0.03) 1(120) 72.1198
50 1(600) 1(60) 0(0.03) 0(85) 76.6395
51 -1(300) 0(40) 1(0.05) 0(85) 40.8734
52 -1(300) 0(40) 0(0.03) 1(120) 45.7192
53 1(600) -1(20) 0(0.03) 0(85) 82.6249
54 0(450) -1(20) -1(0.01) 0(85) 62.6715
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training is achieved when the error function,
which measures the difference between
calculated and desired output values, are
minimized. After the training process, the
ANNSs can predict the desired information [38-
42]. The topology of an ANN is determined by
the number of its layers, number of neurons in
each layer and the nature of learning
algorithms and transfer functions. Finding the
best ANN topology is the most important step
in the development of a model. In the present
study the feed-forward multilayered perceptron
(MLP) ANN was tested [43].

2.5. Training and validation of ANN

The Levenberg-Marquardt method is a
standard technique used to solve nonlinear
least squares problems. Least squares
problems arise when fitting a parameterized
function to a set of measured data points by
minimizing the sum of the squares of the errors
between the data points and the function. The
algorithm is based on gradient descent method
to calculate and update the values of weights
and biases in the network, by using a function
optimization technique to reduce the error in
the training data set. Notably, Levenberg-
Marquardt algorithm is particularly efficient in
minimizing sum of square errors for non-linear
functions, and therefore its performance has
been measured by root mean squared error.
The connection between inputs, hidden and
output layers consist of weights (w) and biases
(b) that are considered parameters of the
neural network (NN) [44]. The neurons in the
input layer simply introduce the scaled input
data via w to the hidden layer. The neurons in
the hidden layer carried out two tasks. First,
they sum up the weighted inputs to neurons,
including b, as shown by the following
equation:

sum = E x;w; +b

®)

where x; is the input parameter. The weighted
output is then passed through a transfer
function. In this study, tansig was used as a
transfer function between input and hidden
layer, while purelin was used as a transfer
function between hidden and output layer,
shown by the following equations:

1—exp(—sum)

Tansig (sum) =
1+ exp(—sum)

(6)

Purelin (sum) = sum (7

The output produced by hidden layer
becomes an input to output layer. Neurons in
the output layer produce the output by the
same method as that of neurons in the hidden
layer. An error function is carried out based on
predicted output and actual output. The
commonly used error function the mean
squared error (MSE) was employed in this
work which is defined as follow:

MSE = 3V, - Yy )
®

Y, 1s the target output, Yny is the predicted
output and N is the number of points. One of
the most employed classes of training
algorithms for feed-forward neural network
(FFNN) is the back-propagation (BP) method.
Training of ANN by means of BP algorithm is
an iterative optimization process where the
MSE is minimized by adjusting the w and b
appropriately. There are many variations of BP
algorithm for training NNs. During training
step the w and b are iterative updated by LM
algorithm until the convergence to the certain
value is achieved. Different variables may have
various magnitudes, and some could be
unmerited, but favorable, effect on the
monitored quantity. In this research, all inputs
and output are normalized within a uniform
range (0-1) according to the below equation:

(X-Xx

min)

X

X
max ~ “*min ) (9)

norm — (X

where X is variable, Xn« 1s maximum value
and Xnix 1s minimum value.

The process of modeling was divided into
three stages: training of ANN, validation and
testing of the results. For this purpose, three
data sets were required, and therefore,
available 54 samples were randomly divided
into three sets of training, validating and
testing data. The experimental data were
randomly divided into three sets: 40, 7 and 7 of
data sets were used as training, validation and
testing, respectively (Table 1). The training
data were used to compute the network
parameters

3. Results and Discussion

After synthesis of catalyst, three detection
methods were done to characterize ZnO-MgAl
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layered double hydroxides. Figure 2 shows FT-
IR spectrum of ZnO-MgAl layered double
hydroxides synthesized using co-precipitation
method. Peaks under 1000 cm! are because of
the M-O and M-O-M bond vibration and
stretching. Naturally peaks in 1381 and 3457
cmlare related to the existence of COs2 and
hydroxyls groups adsorbed to the layers,
respectively. Figure 3 shows the scanning
electron microscopy images approving Nano
scale synthesis of the ZnO-MgAl layered double
hydroxides. Since the scale of the Nano
composite layers are under 100 nm more area
provided for attraction of irradiated photons
and therefor photo catalytic performance of
photo catalyst enhanced and caused more dye
degradation in aqueous solution.The structural
characterization of the synthesized LDH was
carried out by XRD. Figure 4 illustrates the
XRD pattern of the synthesized -catalyst
showing layer innate of catalyst, but because of
the ZnO decorated with the layers, peaks are so
sharp.

3.1. RSM modeling

Response surface designs are useful for
modeling a curved quadratic surface to
continuous factors. A response surface model
can pinpoint a minimum or maximum
response, if one exists in the factor region.
Three distinct values for each factor are
necessary to fit a quadratic function, so the
standard two-level designs cannot fit curved
surfaces. In this technique, the main objective

i 1 8 Pl
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is to optimize the response surface that is
influenced by process parameters [45]. RSM
also quantifies the relationship between the
controllable input parameters and the obtained
response surfaces [46]. Box-Behnken design
was used in this study for optimization and
modeling of photo catalytic degradation [47].
The Box-Behnken design is an alternative to
central composite designs. One distinguishing
feature of the Box-Behnken design is that
there are only three levels per factor [23].

3.2. RSM modeling and optimization of
photo catalytic treatment

The 4-factor BBD matrix and experimental
results obtained for the photo catalytic
degradation of MO from aqueous solution are
presented in Table 1. Based on the
experimental design (Table 1), the response
surface model relating the photo catalytic
degradation efficiency with independent
variables was constructed to fit experimental
data. The linear model in terms of code
variables that approximated the efficiency of
the photo catalytic degradation process may be
written as follows:

Y=73.82+19.372X;:- 5.36X2 + 4.384X;s + 7.912X4
-8.37X1 X1 - 4.2X0X5 - 9.08X:5X5 -8.21 XXy
+ 3. 17X:1 X4 - 4.24X:Xs - 3. 74X X4 + 1.81X:Xy

(10)

where Y is a response variable of dye removal
efficiency, X; is calcination temperature (°C),
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Figure 2. FTIR spectra of ZnO-MgAl layered double hydroxide
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Figure 4. XRD spectrum of ZnO-MgAl layered double hydroxides
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X2= dye concentration (ppm), X3 = catalyst
amount (mg), and X, = irradiation time (min).
Meanwhile, the b; are regression coefficients for
linear effects; bi;i the regression coefficients for
squared effects; bir the regression coefficients
for interaction effects and x; are coded
experimental levels of the variables. The model
explained perfectly the experimental range
studied, as can be seen from a comparison of
the graphical representation of actual vs.
predicted values (Figure 5).

Table 2 shows the results of the ANOVA
analysis of the linear model for the photo
catalytic oxidation of dye wastewater. Larger F
values and smaller P values are an indication
of the significance of the model. The model F'
value of 53.32 and P value < 0.0001 implied the
high significance of the model. There was only
a 0.01% chance that the ‘Model F value’ could
occur due to noise. P values less than 0.05
indicated which model terms are significant. In
this case, all the factors were highly significant
because P < 0.05. The ‘Lack of Fit F value’ of
2.58 and P value of 0.018 implied that the lack
of fit was not significant relative to the pure
error. The non-significant lack-of-fit indicated
good predictability of the model. Coefficient of
determination (R2) is defined as the ratio of the
explained variable to the total variation and a
measure of the degree of fit. It was found that
the predicted values matched the experimental

1an

values reasonably well with R2 = 0.9407. This
implied that 94.07% of the variations for MO
removal were explained by the independent
variables and this also meant that the model
did not explain only 5.93% of the variation. The
R2 of 0.9407 was in reasonable agreement with
Adj.R2  of 0.9222, also indicating better
predictability of the model (Table 3).

The student ¢ distribution and the
corresponding values, along with the
parameter estimate, are given in Table 4. The
P-values were used as a tool to check the
significance of each coefficient, which, in turn,
are necessary to understand the pattern of the
mutual interactions between the test variables.
The larger the magnitude of the ¢-value and
smaller the P-value, the more significant is the
corresponding coefficient.

3.3. Response surface and contour plots
for MO removal of the aqueous solution

Three dimensional response surface plots
and counter plots computed by means of the re-
sponse surface model for dye removal from
wastewaters are shown in Figures 6-8, reveal-
ing the predicted effects of factors upon re-
sponse.

Figure 6 illustrates the effect of calcination
temperature and the irradiation time on dye
removal efficiency (CR %) for initial dye con-

¥=0.9407x+ 3.55%96

2l R:= 0.9407

80
7
g0
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40 ..
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Figure 5. Comparison of the experimental results of MO degradation efficiency (CR %) with those

calculated via Box-Behnken design resulted equation
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centration. It is observed in Figure 6 that the
removal efficiency, increased with increasing
both calcination temperature and irradiation
time and at least more than 94% dye removal
was obtained after 600 °C calcination and 120
minute UV irradiation. It is also obvious that
both of these two Independent variables are so
important in dye removal. Since photo catalyst
was synthesized in nano scale structure by
drop wise addition of the two solutions, area is
greater than the volume and cause more pho-
ton attraction on the surface of the photo cata-
lyst and eventually more degradation of the or-
ganic pollutant by photocatalytic process. So
it’s obvious that drop wise addition of the
cations solution on the caustic solution is so im-
portant because of the Nanostructure synthesis
of photo catalyst-adsorbent.

Figure 7 illustrates the effect of calcination
temperature and catalyst amount on dye re-
moval efficiency (CR %). As it is obvious, by
adding more amount of catalyst, more electron-
hole (e-h*) pairs have been created and caused
more MO removal from the aqueous solution
that led to enhancement in dye removal.
Whereas the increasing amount of photo cata-
lyst that decorated on MgAl layered double hy-
droxide, increase more space for adsorption of
organic dye pollutant that finally can be de-
grade by ZnO decorated on the adsorbent. So
both of the calcination temperature and
amount of photo catalyst enhance the perform-
ance of the synthesized material.

Figure 8 illustrates the effect of irradiation
time and catalyst amount on MO removal (CR
%). It shows that prolonging the time of UV ir-

Table 2. Analysis of variance (ANOVA) for fit of MO removal efficiency from Box-Behnken design

Source of Sum of Degree of free- Adjusted mean F-value P-value
variations square dom square
Regression 13445.7 12 1120.48 53.32 0.000
Lack of fit 444.6 12 37.05 2.58 0.018
Residuals 861.6 41 21.01
Total 14307.3 52

Table 3. Statistical measures and performance of the RSM using Analysis of variance (ANOVA)

S R2

R2(adj) R2(pred)

4.58405 94.07%

92.22% 89.65%

Table 4. Estimated regression coefficients and corresponding ¢ and P-values from the data of Box-
Behnken design experiments

Coefficient Parameter estimate Standard Error t-value P-value
b0 73.32 1.89 38.84 0
bl 19.372 0.944 20.53 0
b2 -5.36 0.944 -5.68 0
b3 4.384 0.944 4.65 0
b4 7.912 0.944 8.38 0
b1l -8.37 1.42 -5.91 0
b22 -4.2 1.42 -2.96 0.005
b33 -9.08 1.42 -6.41 0
b44 -8.21 1.42 -5.8 0
b14 3.17 1.63 1.94 0.06
b23 -4.24 1.63 -2.6 0.013
b24 -3.74 1.63 -2.29 0.028
b34 1.81 1.63 1.11 0.274
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radiation, cause more dye removal because of

more e-h* pairs created and finally the dye deg-
radation performance increased.

3.4. Determination of optimal conditions
for MO removal

The desired goal in term of dye removal effi-
ciency was defined as “maximize” to achieve
highest treatment performance. The optimum
values of the process variables in optimum con-
ditions are 600 (°C), 20 (ppm), 0.05 (mg) and
120 (min) calcination temperature, dye concen-
tration, catalyst amount and irradiation time,
respectively. After verification through a fur-
ther experimental test with the predicted val-
ues, the result indicates that the maximum dye
removal efficiency was obtained when the val-
ues of each parameter were set as the optimum
values. It implies that the strategy to optimize
the removal conditions and to obtain the maxi-
mal removal efficiency by RSM for the photo

catalytic removal of the MO with ZnO-MgAl
layered double hydroxide was effective.

3.5. ANN modeling

Artificial neural networks (ANN's) are
inspired by biological neural systems. In this
approach weighted sum of inputs arriving at
each neuron is passed through an activation
function (generally nonlinear) to generate an
output signal [48]. An additional bias input is
added to the weighted sum for increasing or
lowering the net input to the activation
function. Functions thus synthesized are
largely determined by the network architecture
and connections between the processing units
[49]. Majority of ANN architectures are feed-
forward networks which are mostly trained
from the input data using error Dback-
propagation algorithm. Each input node
represents an independent variable while the
output nodes give the dependent variables.

response
W <%
W 0 - 50
M 50 - 60
W6 - 70
W ™- 80
W &0 - %0
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time

Figure 6. The response surface plot and contour plot for MO removal efficiency (CR %) as the function
of calcination temperature (°C) and UV lamp irradiation time (min).
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Figure 7. the response surface plot and contour plot of the dye removal efficiency (CR %) as the func-
tion of calcination temperature (°C) and catalyst amount (mg).
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Hidden layers are employed to perform
nonlinear transformations on the input space
and are used for computation purpose [28].
ANN modeling Network topology has
important influences on the predicted results.
The number of input and output neurons is
equal to the number of input and output data,
respectively. However, the number of neurons
in hidden layer was recognized by training
several ANN topologies and selecting the
optimal one based on minimization of MSE and
improving generalization ability of the topology
[46]. In this study, the optimal topology of the
ANN model was including four inputs, one
hidden layer with 5 neurons and one output
layer [32].

A fully connected three-layer feed-forward
network with the input, hidden, and output
layers is shown in Figure 9. Each node in the
input layer represents the value of one
independent variable while the output nodes
indicate the dependent variables. Selection of
optimum number of hidden layer neurons in
the ANN architecture falls in the rubric of bias-
variance dilemma. Bias indicates the degree of
agreement between the model and the training
data whereas variance represents the
complexity of the approximating model. The
number of hidden neurons determines the
model complexity of an ANN. Increase in the
number of hidden layer neurons compromises
the generalization ability of the ANN at the
cost of minimizing the training data set error.

In order to determine the optimal number of
neurons in the hidden layer, MLPs with
different number of hidden layer neurons
(varying from 1-30 in our case) were trained.
The optimal networks found were afterwards
used to identify the optimum regions on the
basis of the maximum photo catalytic oxidation

response

time

rate of MO and eventually 5 neuron was
selected as the best for modeling process
(Figure 10).

The degradation of MO as organic pollutant,
as predicted by the ANN is compared to the
experimentally obtained values in Figure 11 In
order to test the suitability of the model, the
predicted and actual results were plotted in
Figure 11 and the coefficient of determination
(R?2 = 0.968) illustrates good agreement with
the two sets of results.

The determination coefficient (R2) for
training, validation, testing and all data sets
are summarized and presented in Table 5
proving the good proximity of the designed
model for MO removal from aqueous solution.
The Table 6 shows the statistical analysis of
the experimental data versus predicted data of
artificial neural network model. The ability of
the model in prediction of varying data is
clearly observable in high percentage of the R2
and R2? (adj). The analysis of ANOVA for ANN
model with their F and P-values are listed in
Table 7 and accepting the capability of the
model and advantage of the artificial neural
network in predicting the process rather than
response surface methodology. In order to
analyze graphically the effect of the each
factors in degradation of methyl orange Figure
12 is designated by authors.

The RSM and ANN models constructed out
of the experimental data correlated fairly well
(R2=0.9407 for response surface methodology
and R2=0.968 for artificial neural network).
Further two validation experiments were
performed and the response of both the models
was found in agreement with the experimental
results. The main effects model indicated that
calcination temperature has highest positive
effect on MO removal efficiency as observed
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Figure 8. the response surface plot and contour plot of the dye removal (CR %) as the function of the
irradiation time (min) and catalyst amount (mg)
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Figure 9. Schematic of the ANN architecture used in this study
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Figure 10. Effect of the number of the neuron in hidden layer

Table 6. Statistical measures and performance

Table 5. Statistical measures and performance
of the ANN using Analysis of variance (ANOVA)

of the ANN model for training, testing, valida-
tion and all data
R2 S R2 R2 (adj)
training validation testing all 0.0394223 96.8% 96.7%
0.98274 0.99148 0.97801 0.98389

Table 7. Analysis of variance (ANOVA) for fit of MO removal efficiency from LM-algorithm by artifi-

cial neural network

Degree of freedom Adj SS Adj MS F-value P-value

Source
Regression 1 2.44696 2.44696 1574.50 0
Error 52 0.08081 0.00155
Total 53 2.52778
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through beta regression coefficients, whereas,
photo catalyst amount and treatment time
have less positive effects on MO removal
efficiency. Response surface and contour plots
for calcination temperature and treatment time
(Figure 6), and calcination temperature and
photo catalyst amount (Figure 7) have strong
interactions for MO removal efficiency. All
three calcination temperature, photo catalyst
amount and irradiation time, increase the dye
removal efficiency, but the calcination
temperature has higher contribution as
observed from beta regression coefficients, than
the photo catalyst amount and irradiation time.
Energy conservation in the process can be

better achieved by increasing the treatment
time, and reducing the amount of photo
catalyst. But, this will ultimately increase the
reactor size.

4. Conclusions

Zn0O-MgAl layered double hydroxides
exhibited promising photo catalytic activity in
the removal of MO from dye wastewaters. The
design experiments and the study the
interaction between factors were successfully
carried out by response surface methodology
and the modeling was done by artificial neural
network. Response surface plots provide a good
way for visualizing the parameter interactions

response = 0.00638 + 0.9880 model
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and the resulting model for photo catalytic
removal process explained 94.07% variance (R2
= 0.9407) for dye removal efficiency. The plots
indicate that the best conditions for dye
removal was 600 °C, 120 min, 0.05 g for
calcination temperature, irradiation time and
catalyst amount, respectively. The ANN model
developed from the limited experimental data
scored fairly well on the validation
experiments, indicating that this model was
able to capture the nonlinearities of the
experimental data better than the RSM model
with a combined regression coefficient of 0.968
for MO photo catalytic removal efficiency.
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