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Abstract 

The carbon monoxide methanation has possessed huge potential as an effective method to produce synthetic natu-

ral gas (SNG). The basic requirements such as high catalytic activity at low temperatures (<500 °C) and high sta-

bility throughout all temperatures is needed for an ideal methanation catalysts. The ultimate goal of the study is 

to examine the influential of different metal promoters towards catalytic properties and catalytic CO methanation 

performance. A series of metal promoters (Rh, Co, Pd and Zn) mesoporous ZSM5 were synthesized using an incipi-

ent-wetness impregnation method and evaluated for catalytic CO methanation. XRD analysis showed that only 

metal oxides and no metallic phase of Rh, Co, Pd, and Zn were observed. The nitrogen physisorption analysis 

showed that mZSM5 possessed high surface area and micro-mesoporosity with intra- and interparticle pores. FE-

SEM analysis illustrated that mZSM5 had typical coffin-type morphology and Rh metal dispersed on the surface of 

the support was confirmed by EDX analysis. Moreover, Rh (CO conversion = 95%, CH4 yield = 82%) and Co (CO 

conversion = 91%, CH4 yield = 71%) promoters showed significant improvement in CO methanation. On the other 

hand, Pd (CO conversion = 18%, CH4 yield = 12%) and Zn (CO conversion = 10%, CH4 yield = 9%) promoters had 

only low benefit to the CO methanation. This study affirmed that the catalytic activity of CO methanation was in-

fluenced by the variation in the type of metal loading due to different nature of metallic phases and their synergis-

tic interaction with the supporting material. Copyright © 2019 BCREC Group. All rights reserved 
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1. Introduction 

Recent years, CO methanation has gained 
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widespread attention in the production of syn-

thetic natural gas (SNG) and appeared to be a 

promising approach due to growing demand for 

natural gas as an important future energy car-

rier [1,2]. The CO methanation reaction occurs 

as follows [3,4]: 
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3H2 + CO → CH4 + H2O            (1) 

 ΔH298K =  – 206.1 kJmol-1 

 

In CO methanation, nickel-based catalysts 

[5-7] are undeniably known as the reference for 

methanation benchmark. Unfortunately, the 

highly exothermic nature of the methanation 

reaction have resulted in Ni sintering and car-

bon formation. Therefore, it is urgent need to 

design and develop new material for CO 

methanation as the alternative for the well-

established Ni-based catalysts. It is noteworthy 

that supporting material played a significant 

role on the catalytic performance. Mesoporous 

zeolite is a type of material, which is the combi-

nation of microporous structure with additional 

intracrystalline or intercrystalline mesoporous. 

It demonstrated excellent catalytic activity in 

alkylation and cracking [8], methanol-to-olefins 

(MTO) [9-10], adsorption reaction [11] and CO2 

capture [12]. Gua et al. studied CO2 methana-

tion over mesoporous Ni/ZSM5, Ni/SBA-15, 

Ni/MCM-41, Ni/Al2O3 and Ni/SiO2. The pres-

ence of basic property and the metal-support 

synergistic effect is the main reason of Ni/ZSM-

5 as the most active methanation catalyst 

among all the mesoporous supports. Moreover, 

it also presented superb anti-coking and anti-

sintering properties [13]. Therefore, mesopor-

ous ZSM5 (mZSM5) can be a better alternative 

for CO methanation.  

Besides, it is well known that different 

metal promoters exhibited different catalytic 

properties and performance. In literatures, the 

effective and convenient way to improve the 

catalytic methanation activity is by addition of 

metal promoters [14-15]. Furthermore, it 

should be noted that the rate controlling step in 

CO methanation is believed to be CO dissocia-

tion in which this dissociation step is structure-

sensitive dependent and happen on metallic 

phase [16]. Panagiotopoulou [17] studied hydro-

genation of CO2 over Rh/TiO2, Ru/TiO2, Pt/TiO2 

and Pd/TiO2 catalysts. They reported that cata-

lytic methanation activity of Rh catalyst is 

more active than Ru catalyst. On the contrary, 

Pd and Pt catalyst are practically inactive.  The 

results significantly depend on the nature of 

the metallic phase. Zhang et al. [18] studied the 

promotional effect of cobalt on MoS2 catalyst 

for CO methanation using a density functional 

study. It is noted that cobalt metal demon-

strated promoting effects on the MoS2 and pro-

vided easiness of OH species removal for con-

tinuous vacant of active sites which can be al-

ways available for further adsorption and inter-

action. Martin et al. [19] examined the struc-

ture-function relationship of Rh/Al2O3 and 

Rh/SiO2 towards CO2 methanation. They found 

that the dissociation of CO2 led to minor forma-

tion of RhOx is the reason for the enhanced ac-

tivity in Rh/Al2O3 catalyst. But, it is notewor-

thy that the existing metal promoters still suf-

fered from deactivation because of low surface 

area of support material and low dispersion of 

loaded metal, which can be avoidable by choos-

ing a suitable supported metal material [20]. 

In the contemporary work, we examined the 

comparative study for CO methanation over a 

series of metals (Rh, Co, Pd, and Zn) supported 

on mesoporous ZSM5 (mZSM5). The selection 

of the metals was based on the potential basis 

to replace the existing Ni-based catalysts. Rho-

dium and palladium were proposed as the no-

ble metal’s candidates. On the other hand, co-

balt and zinc are representative of non-noble 

metals. Although these metals have been stud-

ied over a variety of supports, but to the best of 

our knowledge, the approach to introduce these 

metals onto mZSM5 have not been reported be-

fore. In the current work, the influence of the 

different metals in the physicochemical proper-

ties of mZSM5 and their catalytic performance 

are presented and discussed. Various tech-

niques including XRD, N2 physisorption, FTIR, 

FESEM were used to characterize the struc-

tural, textural and morphology of the catalysts. 

The CO conversion and the products yield (CH4 

and CO2) were investigated.  

 

2. Materials and Methods  

2.1 Materials 

Tetrapropylammonium bromide (TPA-Br, 

98%), benzalkonium chloride (≥ 95%), rho-

dium(III) chloride (RhCl3, 98%), cobalt(II) ace-

tate tetrahydrate (Co(C₂H₃O₂)₂(H₂O)₄, ≥ 98%), 

palladium(II) chloride (PdCl2, 99%) and zinc ni-

trate hexahydrate (Zn(NO3)2.6H2O, 98%) were 

purchased from Sigma Aldrich. Sodium hy-

droxide (NaOH, ≥ 97%), Aluminium hydroxide 

(Al(OH)3, ≥ 99%) and tetraethyl orthosilicate 

(TEOS, ≥ 99%) were obtained from Merck Sdn. 

Bhd., Malaysia. All chemicals were used as re-

ceived without further purification. 

 

2.2 Preparation of Catalysts 

The mesoporous ZSM5 was prepared by 

dual templating method using tetrapropylam-

monium bromide (TPA-Br) as micropore direct-

ing agent and benzalkonium chloride as 

mesopore directing agent [21]. The starting pa-

rameters are Si/Al = 22.90, H2O/Si = 18.30, 

TPA-Br/Si = 0.17, benzalkonium chloride/Si = 

0.06 and NaOH/Si = 0.15. Firstly, the mixture 
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of benzalkonium chloride, tetrapropylammo-

nium bromide (TPA-Br), sodium hydroxide 

(NaOH) and distilled water (H2O) was homoge-

neously mixed at room temperature under stir-

ring speed 1000 rpm for 5 min. Then, alumin-

ium hydroxide, Al(OH)3 and tetraethyl ortho-

silicate (TEOS), Si(OC2H5)4 was added and ho-

mogeneously mixed at room temperature under 

stirring speed 1000 rpm for 3 h. After that, the 

mixture was transferred into autoclave and 

maintained at 423 K for 5 days. The product 

was washed, filtered and drying at 383 K for 3 

h. The as-synthesized catalyst was calcined at 

823 K for 3 h. For metal-promoted mZSM5, 

they were prepared by impregnation of mZSM5 

with an aqueous solution of the corresponding 

m e t a l  s a l t  p r e c u r s o r  ( R h C l 3 , 

Co(C₂H₃O₂)₂(H₂O)₄, PdCl2, Zn(NO3)2.6H2O. The 

resulting slurry was heated slowly at 353 K un-

der continuous stirring and maintained at that 

temperature until nearly all the water being 

evaporated. The solid residue was dried in an 

oven at 383 K overnight before calcination at 

823 K for 3 h. The metal loading of the cata-

lysts chosen was 5 wt%, which is continuity 

from our previous study. Besides, we chosen 5 

wt% metal loading also due to balance between 

activity and economic reason of noble and non-

noble metals. All metal-promoted mZSM5 were 

denoted as Rh/mZSM5, Co/mZSM5, 

Pd/mZSM5, and Zn/mZSM5. 

 

2.3 Characterization of Catalysts 

The crystalline structure of the catalyst was 

studied by X-ray diffraction (XRD) recorded on 

a powder diffractometer (40 kV, 40 mA) using 

Cu-Kα radiation source in the range of 2θ = 2-

90° with a scan rate of 0.1° continuously. The 

nitrogen physisorption analysis of the catalysts 

was carried out by using a Beckman Coulter 

SA 3100. Prior to the measurement, approxi-

mately 0.05 g of catalyst was put into a sample 

tube holder, followed by evacuation at 573 K 

for 1 h. Then, adsorption of nitrogen was car-

ried out at 77 K. Surface area, pore size distri-

butions and pore volumes were determined 

from the sorption isotherms using a non-local 

density functional theory (NLDFT) method. 

FTIR spectra of the fresh catalysts were ac-

quired on Agilent Cary640 FTIR Spectrometer 

using the KBr method with a scan range of 

400-4000 cm−1. The surface morphology and 

EDX analysis of the samples was performed 

using FESEM-EDX (JEOL JSM-6701F) with 

an accelerating voltage of 5 kV. 

  
2.4 Catalytic Performance of CO Methanation 

CO methanation was conducted in a micro-

catalytic quartz reactor at atmospheric pres-

sure at temperature range of 150-450 °C. The 

thermocouple was directly inserted into the 

catalyst bed to measure the actual pretreat-

ment and reaction temperatures. Initially, 0.2 

g of catalyst were treated in an oxygen stream 

for 1 h followed by a hydrogen stream for 3 h at 

773 K and cooled down to the desired reaction 

temperature in a hydrogen stream. When the 

temperature became stable, a mixture of H2 

and CO was fed into the reactor at a specific 

gas hourly space velocity (GHSV) of 13,500 mL 

g-1.h-1 and H2/CO mass ratio of 8/1. The compo-

sition of the outlet gases was analyzed by an 

online 6090 N Agilent gas chromatograph 

equipped with a GS-Carbon PLOT column and 

a TCD detector. The CO conversion and yield of 

CH4 and CO2 were calculated in equation (2-4) 

as below: 

 

(2) 

 

 

(3) 

 

 

(4) 

 

where, Mco,           , and      is the mole of the CO, 

CH4, and CO2, respectively.  

 

3. Result and Discussion 

3.1 Physicochemical Properties of Catalysts 

Figure 1 shows the XRD diffraction analysis 
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Figure 1. X-ray diffraction patterns of (a) 

mZSM5, (b) Rh/mZSM5, (c) Co/mZSM5, (d) 
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of all the catalysts. The XRD results show the 

typical diffraction peaks at 2θ = 7-10° and 22-

25°, which also presented in typical MFI type 

zeolite [21]. The introduction of the metals did 

not shift the peaks position, but the intensities 

of the peaks were slightly decreased as 

compared to the bare mZSM5. However, the 

characteristic diffraction peaks of ZSM-5 still 

remained. 

The broad peak at 2θ = 34.5° was observed 

on Rh/mZSM5, which is assigned to (114) peak 

for Rh2O3 particles in an orthorhombic struc-

ture [22]. The high dispersion of Rh species was 

confirmed by the absence of other Rh-

containing crystal phases. Vita et al. [23] re-

ported that no evidence for the existence of rho-

dium phase (elemental rhodium and/or Rh ox-

ides) on CeO2 was observed because of low load-

ing amount and well-dispersed Rh metal on the 

support. A peak at 2θ = 37° was observed on 

Co/mZSM5, which is a characteristic peak of 

crystalline Co3O4, as reported by Li et al. [24] 

and Díez-Ramírez et al. [25]. Some of the peak 

for Co oxides may be overlapped with the peak 

of mZSM5, and thus, no peak of metallic Co 

was observed. For Pd/mZSM5, a sharp diffrac-

tion peak which assigned to PdO was observed 

at 2θ = 34°. But, no diffraction peak at 2θ = 40° 

and 46°, which attributed to metallic Pd was 

observed [26-27]. Similar result was reported 

by Adams et al. [28] whereby no diffraction 

peaks assigned to Pd species were detected on 

the TiO2, SiO2 and Al2O3 supports due to the 

small amount and well distribution Pd species 

on the surface of the support. Furthermore, 

several peaks at 2θ = 34.5° (002), 36.3° (101), 

47.6° (102), and 56.7° (110), which are charac-

teristic peaks of ZnO wurtzite structure were 

observed on Zn/mZSM5 [29]. In brief, the XRD 

results indicated that no significance struc-

tural degradation was observed after metal in-

troduction and the impregnated metals (Rh, 

Co, Pd and Zn) are mainly exists as metal ox-

ides form. 

The nitrogen physisorption was employed to 

depict the porosity of the material. Figure 2 

demonstrated the nitrogen physisorption iso-

therms of the metal-promoted mZSM5 cata-

lysts. The presence of micropores was affirmed 

by nitrogen uptake at low relative pressure. 

According to IUPAC classification, all catalysts 

exhibited isotherms with type IV pattern and 

H1 hysteresis loops, signifying the characteris-

tic of mesoporous materials. It showed co-

existence of micro-mesoporosity properties in 

the material. Moreover, 2 pronounced steps oc-

curred at P/P0 = 0.2-0.4 and 0.9-1.0, which at-

tributed to capillary condensation of the in-

traparticles pores and interparticles pores, re-

spectively [30]. The results revealed a signifi-

cantly increased in mesopores in Rh/mZSM5, 

as demonstrated by the adsorption behavior in 

N2 adsorption-desorption isotherm. It is proba-

bly due to the presence of external surface Rh 

particles which may causing blockage of the 

original pores structure and created bigger 

pores. This also have led to the increased in in-

traparticle pores and total pore volume in 

Rh/mZSM5. The same phenomenon was also 

observed in metal loaded onto aluminophos-

phate, which led to an increased in the adsorp-

tion-desorption volume probably due to the for-

mation of mesoporous structure [31]. Besides, 

Bautista et al. [32] claimed that the behavior in 

dissimilarity of the mesopore size is attributed 

to the continuous pores restructuring of the 

material. 

Figure 2. Nitrogen physisorption isotherms of the catalysts.  
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Figure 3 demonstrated NLDFT pore size 

distribution of the catalysts. All catalysts dem-

onstrated pore size distribution in the range of 

< 20 Å and 35-70 Å. It can be observed that the 

introduction of metals altered the pore size dis-

tribution of the catalysts. The high number of 

pores at ~35 Å was observed for Pd/mZSM5, 

might be due to the pore blockage by Pd metal 

loading. Besides, Zn/mZSM5 showed an obvi-

ously decreased in the pores at ~40 Å, with the 

simultaneously increased the pores at ~12 Å.  

Table 1 summarizes the textural properties 

of the catalysts. The surface area of mZSM5, 

Rh/mZSM5, Co/mZSM5, Pd/mZSM5, and 

Zn/mZSM5 are 857, 642, 594, 520, and 674    

m2.g-1, respectively. In addition, the total pore 

volume of mZSM5, Rh/mZSM5, Co/mZSM5, 

Pd/mZSM5, and Zn/mZSM5 are 0.2303, 0.2580, 

0.2610, 0.2090, and 0.2530 cm3.g-1, respectively. 

It can be concluded that introduction of the 

metals led to the decrease in surface area. In 

addition, two different trends of total pore vol-

umes were observed: total pore volume in-

creased after introduction of Rh, Co, and Zn. 

Meanwhile, it is decreased with Pd loading. It 

can be postulated that the location of loaded 

Rh, Co, and Zn is on the exterior part of the 

mZSM5. On the other hand, Pd located in the 

inner of the mZSM5 pores. It is noteworthy 

that suitable textural properties are believed to 

be one of the factors for excellent catalytic ac-

tivity by providing higher exposure of the ac-

tive metal-reactant gases interactions and im-

proved the reactant-product diffusion effi-

ciency.  

The examination of the functional groups in 

the catalyst was done by FTIR analysis. Figure 

4 displays the FTIR spectra in the range of 

4000-400 cm-1 for fresh metal-promoted 

mZSM5 catalysts. The stretching vibration of 

hydroxyl group and bending vibration of water 

molecules were presented in the band at 3460 

cm-1 and 1680 cm-1, respectively. The absorp-

tion region of zeolite is shown in the region of 

1300-400 cm-1, due to the presence of SiO4 and 

AlO4 tetrahedron units. The characteristic 

band of the external and internal asymmetric 

stretching vibration were located at 1280 cm-1 

and 1150 cm-1, respectively. Moreover, the 

presence of external symmetric stretching was 

Figure 3. NLDFT Pore size distribution of the catalysts.  

Adsorbents 
Surface area 

(m2.g-1) 

Total pore volume 

(cm3.g-1) 

mZSM5 857 0.2303 

Rh/mZSM5 642 0.2580 

Co/mZSM5 594 0.2610 

Pd/mZSM5 520 0.2090 

Zn/mZSM5 674 0.2530 

Table 1. Physicochemical properties of the 

mZSM5-based catalysts 
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Figure 4. FTIR spectra of (a) Rh/mZSM5, (b) 

Co/mZSM5, (c) Pd/mZSM5, and (d) Zn/mZSM5 

fresh catalysts in the region of 4000-400 cm-1.  
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showed in a small band at 800 cm-1. Two sharp 

bands were observed at 580 cm-1 and 450 cm-1 

can be ascribed to the framework double four 

membered ring vibration and T-O bending vi-

bration (Si-O and Al-O) of MFI type zeolites 

[33-34]. The FTIR results showed no shifting in 

the peak positions for metal-loaded mZSM5 

catalysts as compared with the bare mZSM5 

(not shown), indicating there is no structural 

framework difference present in the catalysts.  

  Figure 5 illustrates FESEM images and 

EDX analysis of mZSM5 and Rh/mZSM5. Both 

mZSM5 and Rh/mZSM5 demonstrated coffin-

shaped morphology. The mZSM5 showed a 

smooth surface morphology while some of Rh 

particles were dispersed on the mZSM5 surface 

was observed for Rh/mZSM5. To confirm the 

presence of Rh on the surface of the support, 

EDX analysis was carried out. From the analy-

sis, it confirmed the approximately 5 wt% of Rh 

loading on mZSM5 support.  

 

3.2 CO Methanation Performance 

Figure 6 shows the catalytic performance 

results for all the catalyst in 150-450 °C. At 450 

°C, the CO conversion and CH4 yield followed 

order of: Rh/mZSM5 > Co/mZSM5 > Pd/mZSM5 

> Zn/mZSM5. Only low CO conversion was ob-

tained for bare mZSM5 (not shown). It should 

be noted that the presence of small amount 

CO2 as the side product of the methanation re-

action. This is due to the co-occurrence of 

methanation reaction with the accompanying 

of water-gas shift reaction (WGSR). Overall, 

the most active catalyst was Rh/mZSM5, while 

the poorest catalyst was Zn/mZSM5. This re-

sult can be explained by the high dispersion of 

Rh on the mZSM5 support as evidenced by 

XRD and pore size distribution analysis. On 

the contrary, Zn metal showed poor dispersion 

and gave an adverse effect on the methanation 

activity. Besides, Co metal favored water-gas 

shift reaction as demonstrated by the presence 

of the highest amount of CO2. Moreover, the 

low catalytic activity of Pd/mZSM5 may be due 

to the low surface area as consequences from 

the blockage of the pores as shown by N2 phy-

sisorption analysis. The results presented the 

variation of metals loaded on mZSM5 will dem-

onstrated different physicochemical properties 
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and lastly affected the CO methanation activity 

of the catalysts. We correlated the relationship 

of catalytic activity with properties of the cata-

lyst (crystal structure, textural properties and 

structural properties), but no obvious trends 

were seen. Generally, the role of metals is used 

to dissociate H2. But, to catalyze the reaction of 

CO and H2 to form CH4, surface sites of 

mZSM5 that bind and activate CO need to be 

co-exist and cooperate with metal sites for dis-

sociation of H2. Therefore, the synergistic phe-

nomenon between metal-support is very cru-

cial. The Rh promotional effect towards cata-

lytic performance could be combination results 

of all the properties and formation of more 

available active sites (Rh metal for H2 dissocia-

tion and mZSM5 for CO adsorption and inter-

actions). Moreover, the synergistic effect of 

both Rh metal and ZSM5 support could be re-

sponsible for this enhancement [13,35,36]. The 

good performance of Rh/mZSM5 in CO 

methanation could be attributed to a synergy 

between well dispersed Rh metal, large surface 

area and suitable micro-mesoporosity of 

mZSM5 support. However, this synergistic ef-

fect needs to be further clarification in the fu-

ture work. In the recent study of Kim et al. 

[37], the high methanation activity of Ru/TiO2 

catalyst have been reported, which simply gov-

erned by “synergy” interaction of Ru and TiO2 

support (in anatase and rutile phase), and fur-

ther led to formation of more dispersed and ac-

tive Ru species.  

The improvement of the catalyst in term of 

catalytic activity with the introduction of met-

als onto supporting material was also reported 

in the previous literatures [38-44]. Panagio-

topoulou et al. [38] reported the apparent acti-

vation energy and products selectivity in the 

solo- or co-methanation of CO/CO2 were de-

pended on the nature of the Ru, Rh, Pt, Pd me-

tallic phase. Besides, Tada et al. [39] evaluated 

the effect of CO conversion activity and prod-

ucts selectivity with the introduction of secon-

dary metals (Ni, Co, Fe, La, K, Ni-La) onto 

Ru/TiO2. They found that CO methanation ac-

tivity was significantly affected with the addi-

tion of La as secondary metal on Ru species for 

improving the electron density and further fa-

cilitated CO bond dissociation. Aziz et al. [40] 

studied a series of 12 metal-based mesostruc-

tured silica nanoparticles (MSN) catalysts on 

CO2 methanation. The active sites that are re-

sponsible for this methanation reaction are ba-

sic metallic surface centers and/or oxygen va-

cancy sites. Miyao et al. [41] reported that the 

enhancement in CO methanation activity was 

observed after the addition of vanadium to the 

Ni/Al2O3 catalyst with inhibition of water-gas 

shift reaction activity. Bacariza et al. [42] in-

vestigated the study of magnesium-promoted 

on Ni-based USY zeolites in CO2 methanation. 

The results showed that lower content of Mg 

improved the methanation activity by en-

hanced Ni particles dispersion and CO2 activa-

tion. Cao et al. [43] favored CO methanation of 

KIT-6 zeolite at low reaction temperature by 

Ni and V surface modification. They stated 

that the CO dissociation was improved by elec-

tron transferring from V species to Ni0 and the 

enhancement in H2 uptake and Ni dispersion is 

attributed to the presence of suitable V 

amount. The enhancement of La promoted Ni 

supported on Y- and Beta- zeolites towards 

CO2 methanation activity was study by Quindi-

mil et al. [44]. The introduction of La promoter 

increased the surface basicity, Ni dispersion 

and CO2 adsorption capacity of the zeolites. 

Based on previous literatures, the enhance-

ment in activity was dependent on the intrinsic 

essence of the metallic phase, which affected 

the activation and dissociation of CO/CO2, and 

further accelerate the methanation activity ac-

companied with inhibiting the side reactions. 

 

4. Conclusions 

A series of metal-based mesoporous ZSM5 

catalysts (Rh/mZSM5, Co/mZSM5, Pd/mZSM5, 

and Zn/mZSM5) prepared using dual tem-

plating and conventional incipient wetness im-

pregnation method were tested towards CO 

methanation. The XRD results confirmed the 

successfully synthesized of ZSM5 support and 

the loaded metals were in the form of metal ox-

ides. The nitrogen physisorption results 

showed that all metal-promoted mZSM5 pos-

sessed both micropores and mesopores. Co-
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Figure 6. The catalytic performance of the cata-

lysts. (A) CO conversion, (B) CH4 yield, and (C) 

CO2 yield.  



 

Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1), 2019, 235 

Copyright © 2019, BCREC, ISSN 1978-2993 

existing of both micro-mesoporosity in ZSM5 

gave an impact on the catalytic activity of CO 

methanation. At 450 °C, the catalytic            

performance of CO methanation arranged in 

the sequence of Rh/mZSM5 > Co/mZSM5 > 

Pd/mZSM5 > Zn/mZSM5. The Rh/mZSM5 

showed the best performance with CO conver-

sion = 95% and CH4 yield = 82%. While, 

Zn/mZSM5 is the poorest catalyst with CO con-

version = 10% and CH4 yield = 9%. This study 

clearly showed the improvement in the CO 

methanation activity was significantly         

governed by the effect of metal promoters on 

mZSM5. The good activity in Rh/mZSM5 proba-

bly due to the synergistic effect of both Rh 

metal and mZSM5 support. 
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