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Abstract 

A series of catalysts constituted of mixed copper and zinc oxides supported on alumina were prepared 

by co-precipitation method. The cooper content was in the 10-90 wt.% range. Their catalytic behavior in 

the hydrogenation of carbon dioxide to methanol was investigated at high pressure (up to 75 bars). The 

catalysts were characterized by elemental analysis, N2-adsorption, N2O-chemisorptions, and X-ray dif-

fraction (XRD). The catalysts showed a clear activity in the hydrogenation reaction that could be corre-

lated to the surface area of the metallic copper and to the reaction pressure. The CuO/ZnO/Al2O3 cata-

lyst with a Cu/Zn/Al weight ratio of 60/30/10, exhibits the highest carbon dioxide conversion and meth-

anol selectivity. Finally, a mechanism pathway has been proposed on copper active sites of (Cu0/CuI) 

oxidation state. Copyright © 2019 BCREC Group. All rights reserved 
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1. Introduction 

Methanol is an important intermediate in 

the petrochemical industry used in the produc-

tion of a variety of products, including gasoline 

and alternative raw materials for the produc-

tion of olefin such as ethylene and propylene [1]. 

The increasing demand for methanol has drawn 

considerable attention in enhancing its produc-

tion. Currently, methanol is industrially pro-

duced starting from CO/CO2/H2 mixture over 

CuO/ZnO/Al2O3 catalysts operating at 50-100 

bars, and 220-300 °C [2]. If the CuO/ZnO/Al2O3 

catalyst exhibits high activity in the methanol 
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synthesis from syngas, its catalytic activity in 

the hydrogenation of pure CO2 results very poor 

[3-5]. In order to improve the catalytic perfor-

mance for methanol synthesis from H2/CO2, it is 

important to synthesize and develop new cata-

lysts with a higher activity in the carbon dioxide 

hydrogenation reaction. Moreover, being CO2 

one of the most common greenhouse gases, to 

develop new and efficient industrial routes for 

its valorization is extremely interesting from 

the economic and environmental point of view. 

Therefore, numerous investigations and 

great efforts have been done in preparing ame-

liorate catalysts for the hydrogenation of carbon 

dioxide [6-11]. Most researchers consider that 

the CuO/ZnO system is responsible for the activ-

ity of the copper phase [12,13]. For this reason, 

the majority of the modified catalysts still con-
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tain Cu-Zn oxides as main constituents, and 

others components can be added in order to 

modify the catalytic properties. 

In this optic, CuO/ZnO catalysts have been 

modified by addition of different metals oxides 

such as PdO, CeO2, ZrO2, Ga2O3, Al2O3, Cr2O3 

and V2O5 [14-32]. It was found that the support 

or promoters act only on the Cu dispersion to 

increase the specific activity. Copper oxide 

alone is not very active in methanol production, 

but, when mixed with ZnO, a combined oxide is 

formed, and the synergic-activity end up in im-

proved catalytic performances, if compared to 

those of the separate oxides. Consequently, 

many studies have been focused on the identifi-

cation of the structure and the nature of the ac-

tive sites of the catalyst surface. It was sug-

gested that the predominant active site for 

methanol synthesis were Cu-Zn pair [33,34], 

Cu+ ions [35,36], Cu0-Cu+ [37,38], or metallic 

copper [39,40]. 

The aim of the present research is to study 

of the influence of CuO/ZnO weight ratios, sur-

face property, and reaction pressure on the ac-

tivity of CuO/ZnO/Al2O3 catalyst in the synthe-

sis of methanol starting from CO2/H2. The 

listed parameters play indeed an important 

role in driving the catalytic performance of 

such mixed oxides catalyst. 

 

2. Materials and Methods 

2.1 Catalysts Preparation  

All the chemicals were purchased from Sig-

ma-Aldrich (St. Louis, MO, USA) and used 

without further purification. A series of 

CuO/ZnO/Al2O3 catalysts with 10 wt.% of Al2O3 

and different CuO/ZnO weight ratios were pre-

pared by co-precipitation method on 10 wt% 

alumina [41]. The copper and zinc nitrate pre-

cursors Cu(NO3)2.2.5H2O (98% purity) and 

Zn(NO3)2.6H2O (99% purity)  were dissolved in 

deionized water and sodium carbonate Na2CO3 

(99.5% purity) was used as precipitating agent. 

Prior to precipitation, the estimated 10 wt.% of 

alumina, Al2O3 (98% purity) was added to the 

solution and the slurry was stirred and kept at 

85 °C. The addition of sodium carbonate in-

creased the pH to 7, allowing the co-

precipitation of Cu and Zn hydroxides on the 

alumina surface. Then, the obtained solid ma-

terial was aged during 2 h under intensive stir-

ring. In the next step, sodium and nitrate ions 

were thoroughly removed by washing the solid 

with redistilled water (6 times) until the total 

elimination of Na+ and NO3ˉ ions. Analysis of 

the filtrate by electrical conductivity confirmed 

this result. 

To avoid agglomeration of the CuO and ZnO 

particles in the CuO-ZnO solid solution, the 

dried precipitate was calcined in air at 350 °C 

for 12 h. Several studies have shown that when 

the calcination temperature exceeded 350 °C, 

specific area and catalytic activity decreased.  

After calcination, all catalysts were character-

ized by IR spectroscopy (Table 1), only O-H 

stretching and metallic carbonates vibration 

band were observed. 

 

2.2 Catalysts Characterization 

X-ray patterns were collected on PANATI-

CAL MPD X’Pert Pro diffractometer operating 

with Cu-K radiation (K = 0.15418 nm) and 

equipped with an X’ Accelerator. The real-time 

multiple strip pattern was collected at 295 K in 

the 5°-70° 2θ range with a step of 0.017° 2θ 

and a time /step of 220 sec; the total collecting 

time was about 2h.  

The copper and zinc content were deter-

mined using an AAS 6800 spectrometer 

(Shimadzu). The specific surface areas of the 

alumina support and the obtained catalyst 

were measured by nitrogen adsorption at -196 

°C by applying the BET method and using a 

Quantachrome apparatus. The metallic copper 

surface area was measured by the decomposi-

tion of N2O at 90 °C [42-44] on the surface of 

metallic copper by the following reaction:  

 

2Cu (s) + N2O (g) → N2 (g) + Cu2O (s)        (1) 

Catalysts 
Adsorption 

bands (cm-1) 
Assignment 

C1 1385 (s) 

1497 - 1631 (l) 

3442 (l) 

Metallic carbonates 

Metallic carbonates 

H2O (O-H) 

C2 1385 (s) 

1631 (l) 

3442 (l) 

Metallic carbonates 

Metallic carbonates 

Eau 

C3 1385 (s) 

1497 - 1631 (l) 

3442 (l) 

Metallic carbonates 

Metallic carbonates 

O-H (H2O) 

C4 1385 (s) 

3442 (l) 

Metallic carbonates 

O-H (H2O) 

C5 1385 (s) 

1631 (l) 

3442 (l) 

Metallic carbonates 

Metallic carbonates 

O-H (H2O) 

Table 1. Infra-red absorption bands of catalysts 

- S : Strong 

- l  : Low intensity 
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The pulse titration technique was employed 

and a thermal conductivity detector (TCD) was 

used to detect the amount of N2O consumed. 

 

2.3 Catalytic Tests 

The catalytic tests have been performed in a 

continuous tubular flow fixed-bed microreactor 

at different reaction pressures and at constant 

temperature of 230 °C for all catalysts. For the 

most active catalyst (C4) further investigations 

at different temperature (in the 170-270 °C 

range) have been performed. Prior to reaction, 

the catalyst (0.5 g) was reduced in H2 flow (1.3 

L.h-1). The reduction program consisted in an 

increment of the temperature from room tem-

perature to 350 °C at 10 °C.min-1 and of a plat-

eau to 350 °C for 8 h. After the reduction step, 

the reactor was fed with the reaction mixture: 

CO2/H2 = 1/3. The total flow rate was in the 0.3-

3.6 L.h-1 range and the tested operating pres-

sures were: 1, 20, 35, 50, and 75 bar, respec-

tively. The reaction mixture and products were 

analyzed on line by using gas chromatographs 

equipped with TCD and FID detectors and Car-

bosieve and Porapak Q columns, respectively. 

The products, detected in the stream flow exit-

ing form the reactor during CO2 hydrogenation 

on CuO/ZnO/Al2O3 catalysts, were almost ex-

clusively constituted of methanol and carbon 

monoxide. Only traces of methane could be ob-

served. Methanol and carbon monoxide selec-

tivity and CO2 conversion were calculated us-

ing the following equations: 

         (2) 

     (3) 

        (4) 

 

3. Results and Discussion 

3.1 Textural properties of CuO/ZnO/Al2O3 cata-

lysts 

3.1.1 N2 adsorption-desorption 

The BET surface area of the CuO/ZnO/Al2O3 

catalysts with different Cu/Zn theoretical and 

experimental weight ratios are summarized in 

Table 2. The surface area significantly decreas-

es when increasing the Cu/Zn ratio. The in-

crease of Cu/Zn ratio should be responsible for 

the decrease of surface area. The growth of 

crystal grain or agglomeration of particles with 

the increase of Cu/Zn ratio should be responsi-

ble for the decrease of surface area. At the op-

posite, the metallic copper surface area in-

creased with the Cu/Zn ratio, suggesting that 

the Cu-containing phase is mainly distributed 

on the surface of the composite. 

 

3.1.2 XRD analysis 

The XRD patterns of the calcined CuO-

ZnO/Al2O3 samples with different Cu/Zn 

weight ratios are constituted of mixtures of 

CuO, ZnO and Al2O3 (Figure 1). The Bragg an-

gles 2θ peaks of 32.5, 35.5, 38.7, 48.7, 58.3, 

61.5, 65.8, and 66.2° [45-46] was attributed to 

( ) 100

2

22

2 
−

=
inCO

outCOinCO

s

ss
conversionCO %

( ) 100
2

3
3 =
conversionCO

s
yselectivitOHCH

outOHCH
%

( ) 100
2

=
conversionCO

s
yselectivitCO

outCO
%

Catalyst 
Theoretical 

Cu/Zn/Al (at %) 

Experimental 

Cu/Zn (at %) 

SCu 

(m2/g) 

SBET 

(m2/g) 

XCO2 

(%) 

SCO 

(%) 

SCH3OH 

(%) 

C1 10/80/10 8.70/81.30 1.12 59 6.0 98.4 1.6 

C2 40/50/10 39.85/49.71 2.52 42 7.5 97.9 2.1 

C3 50/40/10 48.69/38.37 3.56 33 9.0 96.5 3.5 

C4 60/30/10 59.15/28.14 4.45 21 11.4 94.7 5.3 

C5 70/20/10 69.34/18.66 5.60 14 13.0 97.8 2.2 

Table 2. Textural properties and catalytic performance of different CuO/ZnO/Al2O3 catalysts  

Reaction conditions P = 1 bar, TR = 230 °C, CO2/H2 = 1/3 (molar ratio); XCO2: CO2 conversion; S: Selectivity 

Figure 1. XRD pattern of CuO/ZnO/Al2O3 cata-

lyst after calcination 
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CuO and consistent with the characteristic 

peaks of ZnO at of 31.7, 34.1, 36.2, and 56.9° 

[46], and those of alumina at 2θ of 66.5 and 

68.2° 2θ [47]. Increasing of Cu/Zn ratio, the dif-

fraction peaks of CuO become stronger and 

sharper, while the peaks attributed to ZnO 

have the opposite variation trend. The small 

peaks at 2: 29.1, 44.3, and 54.8 are attributed 

to the undecomposed metallic carbonates, such 

as: CuCO3 and/or ZnCO3. 

 

3.2 Catalytic Properties of CuO/ZnO/Al2O3 Cat-

alyst 

3.2.1 Relation between catalytic performance 

and SCu 

The results of the CO2 hydrogenation over 

the various CuO/ZnO/Al2O3 catalysts are given 

in Table 2. The selectivity to methanol in-

creased with the metallic copper surface area 

for the samples containing 10-60% of copper, 

while it decreased when the copper content ex-

ceeded 60%, although the metallic copper sur-

face area was even higher, a result that is con-

sistent with other reports [45,48,49]. This can 

be explained by the positive synergetic effect 

obtained by the contact between copper and 

zinc oxides. On the other hand, the conversion 

of CO2 continuously increased by increasing the 

Cu/Zn weight ratios, while the selectivity to CO 

decreased with the Cu/Zn weight ratios aug-

mentation, for the catalysts containing from 10 

to 60% of copper content, but increased when 

the copper content exceeded 60% [48]. The ef-

fect of metallic cooper surface area on the CO2 

conversion at 230 °C is shown in Figure 2. With 

increasing the Cu/Zn weight ratios, the metallic 

cooper surface area increased and the CO2 con-

version was linearly enhanced. This indicated 

that the CO2 conversion is directly proportional 

to the surface area of metallic copper. These re-

sults confirm that there must be some other 

factors affecting the catalytic performance dur-

ing the synthesis of methanol from CO2/H2. Ap-

parently, Cu0 atoms are the active sites in the 

dissociation of CO2 to CO and Cu-O-Cu species 

[50-53]. The dissociation reaction is the follows: 

 

CO2 (g) + 2Cu0  CO (g) + Cu-O-Cu          (5) 

 

The presence of surface oxygen (Cu-O-Cu) 

enhances both the adsorption of CO2 and of H2. 

The new created Cu-O-Cu active site enhances 

both the adsorption of CO2 and the formation 

of monodentate carbonate (Cu-O-CO-O-Cu) 

species that, after hydrogenation, lead to the 

formation of  monodentate formate (Cu-O-

CH=O), which is the key intermediate in meth-

anol production. The CuO/ZnO/Al2O3 catalyst 

with a Cu/Zn/Al weight ratio of 60/30/10 exhib-

ited the highest selectivity (5.34 %) to metha-

nol at 230 °C.  

 

3.2.2 Temperature effect 

Table 3, illustrates the effects of tempera-

ture on CO2 hydrogenation reaction at atmos-

pheric pressure and stoichiometric feed ratio 

(H2/CO2 = 3).The product stream mostly con-

tains CO and methanol at reaction tempera-

ture in the range between 170 and 270 ºC. 

Moreover, by increasing the temperature, the 

CO2 conversion and carbon monoxide selectivi-

ty was enhanced, while the methanol selectivi-

ty decreased simultaneously. At constant reac-

tion pressure, a lower temperature leads to 

Figure 2. Correlation between the metallic cop-

per surface area and the CO2 conversion at 230 

°C, P =1 bar 

T (°C) 

CO2 

conversion 

(%) 

CO 

selectivity 

(%) 

CH3OH 

selectivity 

(%) 

170 2.60 84.00 16.00 

190 5.00 90.86 9.14 

210 7.16 93.72 7.28 

230 11.4 94.66 5.34 

250 16.4 95.87 4.13 

280 19.0 96.90 3.10 

Table 3. Effect of temperature on the C4 cata-

lyst performance 

Reaction conditions flow = 2 L.h-1, P = 1 bar, CO2/H2 = 1/3 

(molar ratio) 
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higher methanol selectivity. This result sug-

gests that the formate, which is the main route 

for methanol synthesis is unstable at high tem-

perature and decompose to CO and H2O 

through the reverse water gas shift (RWGS) re-

action. 

The effect of flow-rate variation was also 

tested at 0.6, 1, 1.4, 2, and 3.6 L/h, and 230 °C. 

The data for the selectivity ratios during 10 

hours on-stream with the C4 catalyst are re-

ported in Figure 3. By increasing the flow-rate, 

the CO2 conversion and CO selectivity de-

creased, while the methanol selectivity consid-

erably increased. A high flow-rate is favorable 

to methanol formation, whereas the CO for-

mation is enhanced at low flow-rate. 

The effects of the reaction pressure, on the 

activity and selectivity has been studied over 

the most active catalyst C4 (CuO/ZnO/Al2O3: 

60/30/10) at the reaction temperature of 230 °C 

(Table 4). The conversion of carbon dioxide and 

methanol selectivity increased with the total 

pressure, while the carbon monoxide selectivity 

decreased by increasing the total pressures. At 

75 bar, the methanol selectivity reached the 

maximum value. Such a behavior may be due 

to the decomposition of the formate species 

that is much lower at high pressure. Conse-

quently, CO formation can be minimized in-

creasing the pressure. The CO/CH3OH selectiv-

ity ratios expressed as function of the pressure 

show the same trend that observed as a func-

tion of the flow-rate, Figure 4. Finally, high 

pressure and high flow-rate are favorable to 

methanol production, while they present the 

opposite effect on the CO formation. 

 

3.3 Kinetics and Mechanism of Carbon Dioxide 

Hydrogenation  

3.3.1 The activation energy  

Overall, apparent activation energy can be 

determined from the effect of temperature on 

the rate for the CO2 hydrogenation reaction, 

with constant composition and pressure.  

An Arrhenius type plot of ln (rate) is ob-

tained from CO2 conversion to methanol with 

the reaction temperature 170, 190, 210, 230, 

250 and 270 °C (Figure 5). The activation ener-

gy, obtained from the slope of the straight line, 

for fine powdered catalyst CuO/ZnO/Al2O3 

(Cu/Zn/Al weight ratio of 60/30/10), corre-

sponds to 38 kJ/mol for the methanol synthesis 

from CO2 hydrogenation. The activation energy 

is lower than that on copper Cu (110 plane) 

(67 kJ/mol) and on polycrystalline Cu 

(77 kJ/mol) [53-54]. 

Figure 4. Influence of the pressure on the 

CO/CH3OH selectivity ratios at 230 °C 

Pressure 

(bar) 

CO2 

Conversion 

(%) 

CO 

Selectivity 

(%) 

CH3OH 

Selectivity 

(%) 

01 11.4 94.7 05.3 

20 17.5 77.2 22.8 

35 19.0 65.8 34.2 

50 21.4 57.9 42.1 

75 23.0 52.9 47.1 

Table 4. Effect of pressure on the C4 catalyst per-

formance  

Reaction conditions flow = 2 L.h-1, TR= 230 °C, 

CO2/H2 = 1/3 (molar ratio)  

Figure 3. The effect of flow-rate on the Con-

version/selectivity ratios at 230 °C, P=50 bar 

0.5      1.0      1.5      2.0      2.5       3.0      3.5     4.0 
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3.3.2 Carbon dioxide hydrogenation mechanism 

The CuO/ZnO/Al2O3 catalytic system have 

been widely used in industry in the synthesis of 

methanol from syngas and then widely studied 

in the hydrogenation reaction of pure CO2 to 

methanol. In the literature the debate remains 

still open on the methanol synthesis mecha-

nism and on the nature of catalytic active sites 

involved. Two types of reaction pathways have 

been identified in the literature for the hydro-

genation of CO2 to methanol. The first consists 

in the direct hydrogenation of CO2 to methanol. 

The second pathway suggests that CO2 is first-

ly converted to CO (through the RWGS reac-

tion), then to methanol. Several active sites 

configurations have been proposed, some au-

thors, proposed that Cu+ is the site active in 

methanol synthesis, for others the active spe-

cies are constituted of Cu0 or of a mixture of 

Cu+ and Cu0. It is often reported that methanol 

formation occurs preferentially on Cu+ centers 

[35,36], however, it seems that methanol for-

mation is activated only in presence of Cu0 

[37,40]. 

Generally, methanol synthesis by CO2 hy-

drogenation over CuO/ZnO based catalysts im-

plicates three competitive reactions. The first 

reaction is the direct synthesis of methanol 

from CO2: 

 

CO2 + 3H2 → CH3OH + H2O         (6) 

 

The second one is the inter-conversion between 

carbon dioxide and carbon monoxide (RWGS re-

action): 

 

CO2 (g) + H2 → CO (g) + H2O          (7) 

The third one is the synthesis of methanol from 

CO: 

 

CO + 2H2 → CH3OH         (8) 

 

By subtracting the reaction in Equation (7) 

from the reaction in Equation (6) results in:  

 

[CO]/[CH3OH] = k/P2H2              (9) 

 

The [CO]/[CH3OH] selectivity ratio is inversely 

proportional to the total pressure as displayed 

in Figure 4, for the reaction performed at 230 

°C. It is clear that at low pressure, the carbon 

monoxide is the main product, while, at high 

pressure, CO is transformed to methanol, 

demonstrating that carbon monoxide and 

methanol are produced from CO2 by parallel 

reactions. 
This mechanism is also supported by the 

fact that methanol forms very fast if the pres-

sure is high. Moreover, the increasing of the 

flow-rate also enhances methanol formation. 

When the CO2/H2 mixture was feed over the 

CuO/ZnO/Al2O3 catalysts, CH3OH was pro-

duced together with CO and H2O. The metha-

nol synthesis reaction, CO2 + 3H2  CH3OH + 

H2O, takes place in parallel to the reverse wa-

ter gas shift reaction, CO2 + H2  CO + H2O. 

The impact of pressure, flow-rate and tempera-

ture on the products formation suggests that 

CH3OH and CO are produced through parallel 

pathways. By increasing the pressure, the 

CH3OH selectivity increased, while the CO se-

lectivity decreased. The same trend was ob-

served by varying the feedstock flow-rate. At 

the contrary, by increasing the reaction tem-

perature, the methanol selectivity decreased 

and the carbon monoxide selectivity increased. 

These observations suggest that methanol and 

carbon monoxide are directly formed starting 

from the surface formate (O-CH=O) species 

that is formed via hydrogenation of CO2. 

The proposed mechanism for carbon dioxide 

hydrogenation at high pressure suggests that 

the reaction between formate (HCOO) and hy-

drogen brings to the formation of dioxometh-

ylene (H2COO). The dioxomethylene formation 

reaction may strongly compete with the decom-

position reaction of formate to CO. Hence, high 

pressures favor the methanol selectivity, as 

confirmed by the results reported in Table 3. 

Pressure has a very strong influence on the 

production of methanol, probably due to the in-

creasing of moles that characterize the in-

volved reactions and that consequently shifts 

the equilibrium towards the condensation reac-

tion. 

Figure 5. Arrhenius plot of CO2 conversion 

with the reaction conditions: flow = 2 L.h-1, P = 

1 bar, CO2/H2 = 1/3 (molar ratio). 
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Previous works suggested that over copper 

based catalysts, the hydrogenation of carbon di-

oxide to methanol proceeds via the formation of 

the formate surface intermediate [53,56-58]. 

This reaction is usually considered the rate-

determining step. The idea was previously re-

ported by Fujita and co-workers [59] whose 

used IR spectroscopy to study the chemisorp-

tion of CO2/H2 on a CuO/ZnO-based catalyst. 

The reaction intermediates observed on the cat-

alyst surface were carbonate (CO32-), formate 

(HCOOˉ), dioxomethylene (H2COO), formalde-

hyde (CH2O), methoxy (CH3Oˉ) species and the 

final product, CH3OH. The adsorbed species de-

tected on the catalyst (carbonates, formates 

and methoxy) are also in agreement with a sim-

ilar study reported by Bailey et al. [60]. 

Chinchen et al. [61] proposed that the sur-

face atomic oxygen O* (Cu-O-Cu) (a) plays an 

important role during the methanol synthesis 

by promoting the adsorption of CO2, and by 

participating in the hydrogenation step. Based 

on the observations just reported, a tentative 

mechanism is schematized in Figure 6, for the 

methanol synthesis from CO2/H2 over a 

CuO/ZnO containing catalyst. At the first,  the 

carbonate adsorption species (b) are produced 

by exposing the CuO/ZnO catalyst surface to 

CO2/H2. Then the hydrogenation to formate 

(HCOOˉ) (c), followed by the formation of dioxo-

methylene (H2COO) (f) and of methoxy (CH3Oˉ) 

species (g) take place to bring to the final prod-

uct, methanol (CH3OH) (Sequence B). The CO 

is produced by decomposition of the monoden-

tate and bidentate formate. In the same way 

than that of the formate decomposition, the de-

composition of surface hydroxyl species leads to 

water formation (sequence A). 

 

4. Conclusions 

Methanol synthesis over CuO/ZnO/Al2O3 

catalysts occurs via CO2 hydrogenation on the 

partially oxidized copper surface (Cu0/CuI). CO2 

conversion and methanol selectivity strongly 

depend on the catalyst composition, pressure, 

reaction temperature and flow rate. High pres-

sure and high flow-rate enhance the methanol 

formation. Besides a high reaction temperature 

favors the carbon monoxide production. The 

present results show the great influence of the 

catalyst composition and operating pressure on 

the kinetic and catalytic performances of 

CuO/ZnO/Al2O3 catalysts in the CO2/H2 reac-

tion. Methanol is directly produced from CO2 

whatever the pressure, while carbon monoxide 

can be produce by the decomposition of the for-

mate at low pressure or directly from CO2 re-

duction. 
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