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Abstract

Commercially available ZSM-5 was minimally treated as the catalyst to selectively acylate phenols.
The ZSM-5 was simply immersed in ammonium nitrate in order to fill the pores with Bronsted acid to
concentrate the catalytic reactions inside the pores. The reactions were carried out in liquid phase at
383 K. Acetic acid and propionic acid were chosen as the acyl substrate. Gas chromatography reveals
two products which are phenyl acetate and almost exclusively para-hydroxyacetophenone meaning no
ortho product observed. This para selectivity can be attributed to the pores of ZSM-5 where the reac-
tion is assumed to be happening via intermolecular reaction. It is a relatively straightforward method
in making para-hydroxyacetophenone which is known as paracetamol precursor. Copyright © 2018
BCREC Group. All rights reserved
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1. Introduction

Acylation of phenol is an important step in
organic synthesis since the products are key in-
termediates for a number of compounds. Both
ortho-hydroxhyacetophenone (o-HAP) and para-
hydroxhyacetophenone (p-HAP) are used in
Hoechst-Celanese process to produce drug [1].
Separately, p-HAP is known to be used in mak-
ing paracetamol [2,3] meanwhile the o-HAP is
an intermediate to make 4-hydroxycoumarin
and warfarin, both known as anticoagulant
drugs [4], and also to obtain flavanone via
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Claisen-Schmidt condensation [5,6]. In a similar
reaction, acylation of resorcinol is also im-
portant as the product can be used for the pro-
duction of valuable fine chemicals such as ipri-
flavone (antiosteopenic drug) and 4-O-octyl-2-
hydroxybenzophenone (UV-light absorbent for
polymers) [7].

Hydroxhyacetophenone could be synthesized
by Fries rearrangement of phenyl acetate or
Friedel-Crafts direct acylation of phenol [8].
These reactions conventionally are catalyzed
with homogeneous/heterogeneous Lewis Acid
and Brénsted Acid catalysts [9]. The key chal-
lenge in this reaction is to tune the selectivity of
the reaction whether to obtain the ortho, the pa-
ra, or even to reduce the O-acylation product

berec_2856_2018 Copyright © 2018, BCREC, ISSN 1978-2993




Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3), 2018, 574

which is usually phenyl acetate. Porous hetero-
geneous catalysts like zeolite have an ad-
vantage here since the pores can be engineered
to selectively only allow one kind of products.
Their homogeneous counterpart, usually metal
halides, still have some inconvenience like the
need to separate and some environmental is-
sues because they are relatively toxic and cor-
rosive [10].

The ratio of o-HAP dan p-HAP products de-
pends on the reaction condition. Lower temper-
ature usually favors the formation of p-HAP
and higher temperature favors o-HAP [11].
The ratio of p/o increases with lower amount of
catalyst and reaches a constant at increased
amount of catalyst and by using solvent with
great polarity [7]. In previous study, HZSM-5 is
utilized to catalyze Fries rearrangement of phe-
nyl acetate at 170 °C to result a p-HAP selec-
tive reaction (p/o ratio: 6.0) [12]. When the sim-
ilar reaction is carried over the same catalyst
at 265 °C, the selectivity changes to favor o-
HAP (o/p ratio: 35.5) [13]. This shows the effect
of temperature in tuning the selectivity of acyl-
ation. In the case of direct acylation, phenol is
acylated with acetic anhydride over HZSM-5
that shows a very high ortho selectivity (72.4 %
phenol conversion, 20.1 % PA yield, 47.8 % o-
HAP yield, 0.6 % p-HAP yield) [14]. Guisnet et
al. carry out the acylation of phenol with acti-
vated acetic acid in gas phase that still results
in higher ortho selectivity (o/p ratio: 16.0) [15].
One example that shows para selectivity is the
acylation of phenol using benzoic anhydride
over HBEA zeolites with p/o at 2.1 [16].

Here, we report acylation of phenols with
acetic acid and propionic acid over protonated
ZSM-5 with high para selectivity in liquid
phase and relatively mild condition. We devel-
oped the method as straightforward as possible
to reduce any complexity. Nevertheless, the se-
lectivity of the acylation was surprisingly high
towards the formation of p-HAP and little to
none of o-HAP was observed. This simplistic
method shows promise to generate total selec-
tivity of phenol acylation.

2. Materials and Methods
2.1 Materials and Equipments

Propionic acid, acetic acid glacial, phenol
and organic solvents were pq’rchased from
Merck. ZSM-5 {pore size 4.6 A; (0.9 + 0.2)
H-AlO3+(25-50)Si02+ 2H20} was purchased
from Qingdao Wish Chemical. Electron Micro-
graph of ZSM-5 was recorded using JEOL-
JSM-6510LLV Scanning Electron Microscope
(SEM) under low vacuum, operated at 10-15

kV. The XRD measurements of ZSM-5 were
performed on Phillips Analytical X-ray
PW1835 using Cu anode with wavelength of
1.5406 A. Quantification of products were car-
ried out by gas chromatography (GC) using
Techcomp GC-7900 with a flame ionization de-
tector (FID) and a SGE ENX-5 capillary col-
umn (length = 15 m, inner diameter = 0.25
mm, and film thickness = 0.25 pm). Tempera-
ture program for GC analyses was set at 100
oC for 1 min and raised to 190 C at rate of 30
oC/min and from 190 to 210 oC at rate of 10
oC/min. The temperature was finally kept for 5
min at 210 oC. The products were confirmed
with 'H- and 3C-NMR spectra recorded on an
Agilent DD2 system operating at 500 MHz (*H)
and 125 MHz (13C).

2.2 Catalyst Preparation

To a 250 mL solution of 1 M ammonium ni-
trate was added 20 g of ZSM-5. The suspension
was stirred at r.t. for 24 h followed by filtra-
tion. The white solid was dried in oven at 90 °C
for 2 h and calcinated in the furnace at 550 °C
for 6 h. This process was repeated once more to
ensure the protonation of the zeolite. The pro-
tonated zeolite was characterized before and
after utilized as catalyst with XRD and SEM.

2.3 Acylation of Phenol

The 2.5 g protonated ZSM-5 in three neck
round bottom flask was heated at 110 °C for 2
h under Nz atmosphere. The zeolite was cooled
to r.t. before use. To the zeolite was added 21
mmol of phenol in 100 mmol of acid. The mix-
ture was heated at 110 °C and the reaction was
monitored with thin layer chromatography. Af-
ter 72 h, the mixture was filtrated and purified
with silica column chromatography (n-
hexane/EtOAc = 95:5). The products were char-
acterized with NMR and GC-MS:

p-hydroxypropiophenone (p-HPP):

'H NMR (CDsOD): 6 7.87 (2H, d, J = 8.7 Hz),
6.83 (2H, d, J = 8.7 Hz), 3.34 (1H, s), 2.95 (2H,
q, J = 7.3 Hz), 1.15 3H, t, J = 7.3 Hz). 13C
NMR: 6§ 202.1, 163.7, 129.8, 131.6, 129.8,
116.2, 32.1, 8.9.

Phenyl propionate (PP):

1H NMR (CDCls): 6 7.40 (2H, t, J = 7.8 Hz),
7.23 (1H, t, J = 7.3 Hz), 7.11 2H, d, J = 7.9
Hz), 2.61 (2H, ¢, J = 7.5 Hz), 1.29 (3H, t, J =
7.5 Hz). 3C NMR: 6 172.9, 150.8, 129.3, 125.7,
121.5, 27.7, 9.0
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p-hydroxyacetophenone (p-HAP):

1H NMR (CDCls): 6 7.92 (2H, d, J = 8.8 Hz),
6.93 (2H, d, J = 8.6 Hz), 2.58 (3H, s). 13C NMR:
6198.4, 161.2, 131.3, 129.9, 115.6, 26.4

Phenyl acetate (PA):

1H NMR (CDCls): 6§ 7.41 (2H, ¢, J = 8.0 Hz),
723 (1H, d, J = 7.2 Hz), 7.12 2H, d, J = 7.8
Hz), 2.29 (3H,s). 3C NMR: &§ 169.4, 150.7,
129.3, 125.7, 121.5, 21.0.

Phenol conversion (X,) was calculated ac-
cording to Equation (1), while product selectivi-
ty (S;) was calculated using Equation (2). In
this equations, XY, is total area of product, and
Y, is area of phenol, and X; is area of product.

_ 2
X, = W)xlm% 1)

S, = i x100% @)

i ZYi
3. Results and Discussion

The ZSM-5 was protonated before use to
have a Bronsted acid property along with the
Lewis acid property from the ZSM-5 which will
be important in the catalytic process. The pro-

o) OH
OH OJ\R
© RCOOH © .
H-ZSM5 0" "R

phenol O-acylation C-acylation

Scheme 1. Acylation of phenol; R = CHs; CoHs
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ton was designated only to be inside the pores
of ZSM-5 by drying the zeolite after immersion
in ammonium nitrate. This is to make sure
that the Bronsted acids catalyze the reaction
inside the pore, not outside, in order to in-
crease selectivity. SEM images (Figure 1) show
that the ZSM-5 has the shape like coffin and
did not indicate any changes before and after
protonation. XRD measurement also gave a
similar diffractogram before and after protona-
tion that suggests there is no significant
change in morphology (Figure 2).

The acylation of phenol reactions were car-
ried out for 72 h over ZSM-5 as the catalyst in
a relatively mild condition (383 K) and liquid
phase. There were two acyl substrates applied,
acetic acid and propionic acid. After 24 h of re-
actions, the phenol was still observed and the
reaction might have stopped at 24 h since no
changes were observed after 24 h. This might
be the indication of deactivation of the catalyst
has occurred after 24 h.

HZSM-5
—J
ZSM-5
— At Mo
IIO I 2I0 . SIO . 4I0 ) 5I0

26(°)

Figure 2. Difractogram of ZSM-5 before
(bottom) and after (up) protonation

(SE) 15k
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Figure 1. SEM micrographs of ZSM-5 (A) before and (B) after immersion with ammonium nitrate
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Gas Chromatography measurements of the
crude show both substrates gave two products
(see Electronic Supporting Information). After
work up and purification, the products were
checked in NMR. The NMR spectra confirmed
that the two products obtained are O-acylation
as the major and the other is C-acylation. O-
acylation products are phenylacetate (PA) and
phenylpropionates (PP) meanwhile the C-
acylation are p-hydroxyacetophenone (p-HAP)
and p-hydroxypropiophenone (p-HPP). The re-
actions have moderate conversions at around
35 %. It is still a challenge to raise this conver-
sion especially since phenyl acetate produced
can also be reversed to produce phenol and ke-
tene that reacts further with water to form ace-
tic acid [8,17].

Table 1 shows the summary of acylation of
phenol catalyzed by ZSM-5 on the two sub-
strates. The remarkable part of the results was
the selectivity of the C-acylation that only pro-
duced para products for both of the substrates.
No ortho products were observed that leads to
the conclusion that the selectivity is almost 99
%. The absence of ortho products gives a clue
that the reaction might occurred inside the
pore hence the exclusivity of the para products.
The pores of ZSM-5 itself favor the insertions of
para substituted benzenes than the ortho ones
[18]. Inside the pores, the para products are
formed via intermolecular reaction not intra
molecular Fries rearrangement [19]. The reac-
tions were indeed designed to occur inside the
pores by removing the possible excess of
Brosnted acid via drying the ZSM-5. It was also
mentioned that lower temperature favor the
formation para products [7]. Furthermore,
p-hydroxyacetophenone can be formed through
double acylation of the phenols followed by hy-
drolysis of the ester [15,20].

4. Conclusions

A very high selectivity towards para
product of acylation of phenol with acetic acid
and propionic acid over HZSM-5 was achieved.
The method is relatively straightforward since
it is carried out in liquid phase, mild condition,
and minimum preparation of catalyst. The
high selectivity can be achieved because of the
use of protonated ZSM-5 which has a unique
porous characteristic, as well as the Lewis
acidity, that suits this selective reaction. This
is really a remarkable lead to further investi-
gate total selective acylation over HZSM-5. A
high selectivity of acylation of phenol towards
ortho products 1is really important in the
making of paracetamol precursors.
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Spectrum S8. 3C NMR Spectrum of Phenyl Propionate (PP)
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Chromatogram S9. Gas Chromatogram of Acetylation of Phenol
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10 42558 42405 42655 93510 0.18 13483 022 6.94 4-Acetoxyacetophenone
1 48480 48.380 49.003 55257 0.11 2521 04 2187 Acetic acid, 8-acetoxy-6-benzenesulfonyl-2-thy
12 57112 56.955 51.280 162987 032 14681 024 1110V Benzenebutanal. .gamma... gamma. 4-tnmethyl
13 57530 57.280 57.630 123632 0.24 7477 0.12 1653 V
14 58435 58.230 58.555 118795 0.23 9810 016 1211 'V Benzene, 1.1'(1.1.2.2-tetramethyl-1.2-ethaned
15 60.183 59.955 60.305 58284 0.11 6215 0.10 938 1-Butanone, 1.4-bis(4-methylphenyl)-
51670739 100.00 6101250  100.00
Important Peaks

Peak R. Time Compound Area

6 11.767 Phenol 27655484

7 16.172 Phenyl Acetate (PA) 9560309

9 41.743 p-hydroxyacetophenone (p-HAP) 3300107
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Chromatogram S10. Gas Chromatogram of Propionalization of Phenol

1L
1,500,000 0
g
o g
PN "SI S S . Fo—
100 200 300 400 500 60
i
Peak Report TIC
Pl  RTue ITme  FTme Area  Area% Heght Heghto  AH Mak Name
1 2131 2040 2210 13156 023 46696 106 242V 1-Chloro-1-mtrosoethane
2 2297 2250 2325 30333 0.06 11615 026 261 'V 2-Propanone (CAS)Acetone
3 2375 2325 2400 26051 0.05 12245 028 213V Acetic aod, methyl ester (CAS) Methyl acetate
- 254 240 2575 13336 0.15 17435 040 421V Acetic acid (CAS) Ethylic acd
5 2783 2740 2845 6134 112 M4933 556 29 Propanotc acsd, methyl ester (CAS) Methyl prc
6 4004 3.055 4085 17005750 3395 65334 1483 2603 'V Propanotc acid (CAS) Propionic acid
1 11.737 11440 12135 19156998 3825 1975776 4485 970 SV Phenol (CAS) Izal
8 22483 0.255 22625 7963820 1590 1041884 2365 764 'V Propanoic acid, phenyl ester
9 38975 38965 39095 413 005 M0 0 012 482V annl]12 swd12-4.49.10exo-Tetrachloro-11e
10 47506 47115 48.005 4874840 9m 360710 819 1351 Propanoic acsd, phenyl ester (CAS) Phenyl pro
1l 53.695 33465 53.865 24515 0.51 35083 0.80 125 Paroxypropione
50086566 100.00 405211 100,00
Important Peaks

Peak R. Time Compound Area

7 11.737 Phenol 19156998

8 22.483 Phenyl Propionate (PP) 7963820

10 47.506 p-hydroxypropiophenone (p-HPP) 4874840
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