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Abstract 

The desulfurization of oil must be resolved as soon as possible due to a variety of issues, including environmental 

contamination and protection regulations. It was believed that oxidative desulfurization (ODS) was the most 

promising method. In this research, metal oxide-based layered double hydroxides (TiO2@Ni-Al and ZnO@Ni-Al) 

were effectively synthesized for the ODS of 4-methyldibenzothiophene (4-MDBT). TiO2@Ni-Al and ZnO@Ni-Al ex-

hibited superior catalytic performance and high recycling capacity, achieving a 99% removal rate after five reac-

tions in 30 min. The heterogeneous catalyst TiO2@Ni-Al/ZnO@Ni-Al is easy to separate and recover from a reaction 

system. Increased temperature facilitates the transformation of 4-MDBT into 4-MDBTO2. The influence of H2O2's 

rapid decomposition rate, which can inhibit oxidation reactions, reduces the catalytic activity as the temperature 

increases. 4-MDBT Sulphur removal on TiO2@Ni-Al and ZnO@Ni-Al is 99.48 and 99.51%, respectively. TiO2@Ni-Al 

and ZnO@Ni-Al have great potential for use in the industry based on these results. 
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Research Article 

1. Introduction 

Fossil fuels will continue to be the mainstay 

of energy supply for several years to come due to 

rising populations and worldwide industrial de-

velopment [1,2].  A number of environmental is-
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sues include SO2 emissions from engines, gener-

ators, vessels, and factories [3,4]. The removal 

of sulfur-based substances from fossil fuels has 

assumed great significance [5]. In addition, gov-

ernments across the world have implemented 

progressively strict rules concerning the highest 

allowable amount of sulfur in fossil fuels [6]. 

Hence, the creation of novel ultra-deep desulfu-

rization methods is currently at the frontier of 
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both research and practice in order to satisfy 

forthcoming and future fuel sulfur require-

ments. 

The most common desulfurization process, 

hydrodesulfurization (HDS), operates at high 

temperatures and hydrogen pressures over cat-

alysts supported by alumina [7]. Benzothio-

phene and their derivatives are resistant poly-

cyclic aromatic sulfur heterocycles (PASHs), 

but HDS is extremely effective at desulfurizing 

aliphatic and some thiophenes organosulfur de-

spite these drawbacks [8]. As a result, numer-

ous identical high-performance ultra-deep 

desulfurization technologies have been investi-

gated, such as adsorptive desulfurization, bi-

odesulfurization, photocatalytic desulfuriza-

tion, and oxidative desulfurization, the last of 

which is thought to be one of the most efficient 

and potential techniques [9–12]. 

Sulfones are created when molecules con-

taining sulfur are oxidized by an oxidant dur-

ing the oxidative desulfurization (ODS) process 

[13,14]. H2O2, O2, and air are a few examples of 

the several oxidants that have been used [15]. 

Because of their high reactivities, H2O2 has 

been regarded as the most potent oxidant 

[16,17]. Water is a by-product of H2O2, an oxi-

dant that cannot dissolve in oil. Due to the re-

duced mass transfer across the interface be-

tween the oil and water phases as a conse-

quence of this, the rate of ODS is decreased in 

a two-liquid-phase reaction mixture [18]. The 

sulfones may be extracted from non-polar hy-

drocarbon streams using liquid-liquid extrac-

tion and polar solvents because they have 

greater polarities than their progenitors [19]. 

The ODS process heavily relies on the use of 

a suitable catalyst, which is thought to increase 

the activity of oxidants [20,21]. As a result, 

many different kinds of catalysts, including pol-

yoxometalates and their composites, supported 

metal oxides, phase-transfer catalysts, two-

dimensional (2D) catalysts with a hexagonal 

structure, titanate nanotubes, as well as organ-

ic acids, have been created and assessed in ear-

lier studies [22]. Researchers from all around 

the world pay particular attention to layered 

double hydroxide (LDH), a subcategory of lay-

ered materials, because of their exceptional 

qualities. The metal hydroxide layers in LDH 

have an interesting structure that is similar to 

that of brucite. The features of the LDH, such 

as layer spacing, active site, and surface 

charge, can be simply adjusted by modification 

with other materials [23,24]. 

Metal oxides support layered double hydrox-

ide to increase the active site in the ODS pro-

cess. Metal oxide catalysts are low-cost, have a 

high oxidizing capacity, and have gained signif-

icant interest in the degradation and oxidation 

of environmental pollutants [25]. Generally, it 

is acknowledged that the most crucial elements 

for a suitable catalyst are excellent perfor-

mance, cheap cost, and ease of repair [26,27]. 

Additionally, the economics of the ODS process 

may be significantly impacted by the separa-

tion and recyclability of catalysts [28,29]. Due 

to the difficulties in obtaining homogeneous 

catalysts at the last step of the process, hetero-

geneous catalysts are thus more beneficial and 

cost-effective [30]. 

In this case, the 4-methyldibenzothiopehe 

by ODS was carried out using the metal oxides-

based LDH. It investigated how the catalyst's 

recycle catalyst behavior was affected by the 

reaction circumstances. To comprehend the 

outstanding ODS process of catalysts, effect a 

kinetic study was carried out. Investigated was 

how well the catalysts performed throughout 

consecutive desulfurization and recycle cata-

lyst performances. 

 

2. Materials and Methods 

2.1 Materials and Instrumental 

Without further purification, analytical 

grade sodium hydroxide (NaOH), hydrogen 

peroxide (H2O2), zinc(II) / nickel(II) / magnesi-

u m  n i t r a t e  h e x a h y d r a t e 

(Zn/Ni/Mg(NO3)2.6H2O), acetonitrile (CH3CN), 

a l u m i n u m  n i t r a t e  n o n a h y d r a t e 

(Al(NO3)3.9H2O), titanium(IV) oxide (TiO2), 

zinc(II) oxide (ZnO), and distilled water were 

also used. Various analytical techniques were 

used to characterize the physicochemical char-

acteristics of the synthesized materials. X-ray 

diffraction (XRD; Rigaku Miniflex-6000; con-

structed with Cu-K radiation, 5–70°) was 

used to study the crystal phases. FTIR spectra 

were used to determine the chemical groups of 

catalysts. The samples were produced using 

the KBr pellet technique, and the results were 

recorded using a Shimadzu Prestige-21, 500-

4000 cm−1. Scanning Electron Microscope 

(SEM, Quanta 650) was carried out at 250 

times magnification. 

 

2.2 Catalyst Preparation 

First, M2+/Al-LDH (M= Zn, Ni, Mg) was syn-

thesized by following a literature method 

[31,32]. TiO2/ZnO@M2+/Al-LDH (M= Zn, Ni, 

Mg) was prepared by adding TiO2 or ZnO to 

M2+/Al-LDH (M= Zn, Ni, Mg) solution with ra-

tio 1.0. Afterward, 150 mL NaOH 0.37 M was 

added and stirred at 150 rpm for 24 h at 80 °C. 
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Then, the mixture was calcinated for 10 h at 

300 °C and stored. 

 

2.3 ODS Process of Catalyst 

The 4-MDBT was dissolved in n-hexane 

with a concentration of 500 mg/L. A 250 mL 

chemical flask with two holes was used to oxi-

dize 4-MDBT with H2O2 whilst under atmos-

pheric pressure. The chemical flask with two 

holes was first filled with a particular quantity 

of H2O2 (2 mL). Next, around 0.25 g of the cata-

lyst and 25 mL of 4-MDBT were added, respec-

tively, to the center of the reactor. With the use 

of an oil bath, the reactor was heated to a range 

of consistent temperatures of 50 °C while being 

magnetically agitated. After the reaction had 

been going for 60 min, the liquid was cooled 

and separated. In order to ensure that all sul-

fur was eliminated, the clear mixtures were 

then extracted twice with 2 mL of acetonitrile. 

For catalyst recycle performance, the separated 

catalysts from each reaction might be used 

again after being cleaned and dried for 12 h in 

a vacuum oven at 60 °C. For the purpose of en-

suring that the findings were reproducible, 

each experiment was performed three times. 

The percentage of 4-MDBT conversion followed 

the Equation (1) [33]: 

 

(1) 

 

where, C0 and Ct are the initial and concentra-

tions of 4-MDBT after t time, respectively. 

 

3. Results and Discussion 

The X-ray diffraction pattern of TiO2, 

TiO2@Zn-Al, TiO2@Ni-Al, TiO2@Mg-Al, ZnO, 

ZnO@Zn-Al, ZnO@Ni-Al, and ZnO@Mg-Al are 

shown in Figure 1. The typical reflections 

(101), (004), (200), (105), (204), and (116) of 

TiO2 are shown by the peaks of diffraction at 

2θ = 25.19°, 38.01°, 48.37°, 54.09°, 62.85°, and 

68.94°, (JCPDS card No. 021-1272) [34]. On the 

other hand, the ZnO primary peak values were 

observed at 2θ = 31.69°, 34.33°, 36.36°, 47.55°, 

56.53°, 62.84, 66.50°, 67.91°, and 69.13° which 

represent to the typical reflections (100), (002), 

(101), (102), (110), (103), (200), (112), and (201) 

(JCPDS card No. 36-1451) [35,36]. Whereas the 

peaks of layered double hydroxide (Ni-Al, Mg-

Al, and Zn-Al) at 2θ = 9–12° and 60–62° as 

shown layered materials. 

The functional groups adhered to the sur-

faces of TiO2, TiO2@Zn-Al, TiO2@Ni-Al, 

TiO2@Mg-Al, ZnO, ZnO@Zn-Al, ZnO@Ni-Al, 

and ZnO@Mg-Al are all interpreted using an 

FTIR instrument (Figure 2). The peaks at 655 

and 556 cm−1 for TiO2 and ZnO were the vibra-

tions of Ti−O and Zn−O, respectively [37]. The 

bending vibration of H−O−H was attributed to 

the bands at 3415-3481 cm−1 and 1634-1656 

cm−1 for metal oxide-layered double hydroxide 

Figure 1. XRD pattern of TiO2 (a), TiO2@Zn-Al 

(b), TiO2@Ni-Al (c), TiO2@Mg-Al (d), ZnO (e), 

ZnO@Zn-Al (f), ZnO@Ni-Al (g), ZnO@Mg-Al (h). 

Figure 2. FTIR spectra of TiO2 (a), TiO2@Zn-Al 

(b), TiO2@Ni-Al (c), TiO2@Mg-Al (d), ZnO (e), 

ZnO@Zn-Al (f), ZnO@Ni-Al (g), ZnO@Mg-Al (h). 
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[38]. NO3− stretching was related to the strong 

band at 1325-1391 cm−1 [39,40]. Additionally, 

the M−O−M, M−O, and O−M−O vibration 

modes had peaks below 1000 cm−1 [41]. 

TiO2@Zn-Al, TiO2@Ni-Al, TiO2@Mg-Al, 

ZnO@Zn-Al, ZnO@Ni-Al, and ZnO@Mg-Al all 

showed the typical peaks of metal oxides and 

layered double hydroxide, which proved the ef-

fective synthesis of the composites. 

SEM images of TiO2@Ni-Al and ZnO@Ni-Al 

are shown in Figure 3. The material's morphol-

ogy reveals its surface is uneven and rough. In 

SEM images, roughness is defined as fluctua-

tions, imperfections, or unevenness on the ma-

terial's surface. When there is a lack of uni-

formity in SEM images, the surface character-

istics or features are not constant throughout 

the entire sample. Roughness and non-

uniformity can result from various factors such 

as the synthesis process, deposition methods, 

or inherent properties of the material itself. 

The oxidative desulfurization is greatly in-

fluenced by the catalyst. Thus, the catalyst's 

ability to be recycled was studied. After every 

run, the catalyst was centrifuged. After multi-

ple rinsing with n-hexane and ultrasound 

equipment, the previously used catalyst was 

desiccated overnight. For the next reaction, the 

Figure 4. Recycle performances of TiO2 (a), TiO2@Zn-Al (b), TiO2@Ni-Al (c), TiO2@Mg-Al (d), ZnO (e), 

ZnO@Zn-Al (f), ZnO@Ni-Al (g), ZnO@Mg-Al (h). 

Figure 3. SEM image of TiO2@Ni-Al (a) and ZnO@Ni-Al (b). 
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recycled catalyst was treated with the new oxi-

dant and extractant. When H2O2 is used as an 

oxidant, the produced H2O is extracted with ac-

etonitrile. Using acetonitrile, sulfones might be 

easily extracted from the 4-MDBT [42]. This 

confirms that the 4-MDBT has been completely 

purified of catalyst and oxidant residues. We 

thus look at the effects of materials based on 

metal oxides when H2O2 is used as an oxidant 

in the same circumstances. In Figure 4, the 

findings of TiO2, TiO2@Zn-Al, TiO2@Ni-Al, 

TiO2@Mg-Al, ZnO, ZnO@Zn-Al, ZnO@Ni-Al, 

and ZnO@Mg-Al in the ODS of 4-MDBT are 

shown. In comparison to other catalysts, 

TiO2@Ni-Al and ZnO@Ni-Al demonstrated 

greater recycling performance. 

Catalyst heterogeneity testing in the ODS 

process is a crucial phase in the development 

and selection of efficient catalysts for reducing 

sulfur content in fuel in an efficient and cost-

effective manner. To determine whether a cata-

lyst is homogeneous or heterogeneous, the het-

erogeneity test is crucial. Homogeneous cata-

lysts consist of catalysts that are in the same 

phase as the reactants. Thus, the catalyst is 

completely dissolved within the reactant phase. 

Heterogeneous catalysts, on the other hand, 

are catalysts in a distinct phase from the reac-

tion material [43]. In this investigation, a het-

erogeneity test was conducted by combining 

0.25 g TiO2@Ni-Al/ZnO@Ni-Al and 25 mL 4-

MDBT. Separating the catalyst from the 4-

MDBT solution after 10 min. Between 20 and 

30 min were devoted to the ODS procedure. 

The ODS results are depicted in Figure 5, 

which demonstrates that there is no significant 

change in the sulfur content, indicating that 

TiO2@Ni-Al/ZnO@Ni-Al is a heterogeneous cat-

alyst. Because they exist in distinct phases, 

heterogeneous catalysts are simple to separate 

and recover from a reaction system [44]. After 

the reaction has been completed, the solid cata-

lyst can be removed, cleaned, and utilized in 

the next cycle reaction. 

The impact of reaction time on the oxidative 

desulfurization of 4-MDBT was examined dur-

ing the course of 10–60 min at a temperature 

of 50 °C and a catalyst dose of TiO2@Ni-Al and 

ZnO@Ni-Al was 0.25 g in order to optimize the 

following critical factors. Figure 6 shows that 

the elimination of 4-MDBT using H2O2 oxidant 

improves when response time increases from 

10 to 60 min. Because they boost contacts be-

tween 4-MDBT and TiO2@Ni-Al/ZnO@Ni-Al, 

which enhances conversion rates, longer reac-

tion periods often improve the oxidation activi-

ty’s kinetics and catalytic efficacy [45]. As a re-

sult of 4-MDBT molecules utilizing all active 

species and decreasing the likelihood of 4-

MDBT oxidation on the catalyst surface, 4-

MDBT conversion does not vary considerably 

after 30 min.  As a consequence, it was decided 

that 30 min would be the appropriate response 

time for further research. 

The effect of reaction temperature was ex-

amined, as indicated in Figure 7, ascribed to 

Figure 5. The heterogeneity of TiO2@Ni-Al and 

ZnO@Ni-Al. Figure 6. The influence of reaction time. 
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the significance of reaction temperature on 

ODS. It is clear that temperatures used could 

somewhat improve the catalytic activity. Ac-

cording to Wei et al. [46], oxidant availability 

might rise dramatically at higher tempera-

tures, favoring the chemical interaction be-

tween 4-MDBT and the oxidant. In the current 

study, TiO2@Ni-Al and ZnO@Ni-Al eliminating 

99.48 and 99.51 % after 30 min was reported at 

30 °C. As could be observed, the conversion of 

4-MDBT occurred at 99.51 and 99.69 % for 

TiO2@Ni-Al and ZnO@Ni-Al, respectively, 

when the reaction temperature was raised to 

50 °C. These data demonstrate that increased 

temperature aids in the conversion of 4-MDBT 

to the associated 4-MDBTO2. The influence of 

H2O2's rapid breakdown rate, which may stifle 

oxidation reactions, causes the catalytic activi-

ty to decline at temperature rises [47,48]. The 

outcome at 50 °C was effective for 4-MDBT 

conversion and beneficial for energy conserva-

tion. 

The efficiency of ODS is greatly influenced 

by the kind and quantity of oxidant. H2O, an 

ecologically friendly byproduct, was the oxida-

tion product of H2O2. Furthermore, high oxi-

dant concentrations create more oxidizing spe-

cies, which quickens the conversion of 4-

MDBT. To determine the appropriate oxidant 

dose, a desulfurization examination of 4-MDBT 

using the TiO2@Ni-Al and ZnO@Ni-Al catalysts 

with varying oxidant doses was carried out.  

According to Figure 8, more H2O2/4-MDBT re-

sults in higher efficiency of ODS. This is due to 

an increase in the number of catalytically ac-

tive peroxo molecules produced [49]. When 

H2O2 was added in amounts up to 2.5 mL, the 

effectiveness of 4-MDBT elimination increased. 

The activity can be hampered by the potential 

for entering water to collect on the catalyst sur-

face. 

The impact of catalyst dose on ODS perfor-

mance was looked at since it is vital for use in 

the industry. The sulfur removal percentage Figure 7. Temperature’s effect on ODS. 

Figure 8. Effect of H2O2 dosage. Figure 9. The influences dosage of the catalyst. 
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for 4-MDBT is greatly improved by increasing 

the catalyst quantity up to 1 g, as shown in Fig-

ure 9, due to an increase in the system's active 

sites. The catalyst's desulfurization activity did 

not, however, improve when the dose was 

raised to 1 g. Additionally, increasing the cata-

lyst dose to 1 g decreased the sulfur removal 

percentage and, when accounting for the eco-

nomic cost, might significantly increase the 

process cost [33]. As a consequence, the cata-

lyst's recommended dosage was found to be 

0.25 g. The sulfur removal percentage for 4-

MDBT on TiO2@Ni-Al and ZnO@Ni-Al is 99.48 

and 99.51%, respectively. The proposed ODS 

mechanism for 4-MDBT is displayed in Figure 

10. It has been proven that H2O2 intermediates 

frequently play a crucial part in catalysis dur-

ing ODS reactions. This information led to the 

supposition that TiO2@Ni-Al and ZnO@Ni-Al 

first interacted with H2O2 to create H2O2 com-

plexes that might oxidize 4-MDBT into the ap-

propriate 4-MDBTO2. 

 

4. Conclusion 

To sum up, layered double hydroxides based 

on metal oxides were successfully synthesized. 

The meticulously characterized synthetic sam-

ples exhibited excellent catalytic ODS perfor-

mance in 4-MDBT. The prepared catalyst 

demonstrates outstanding stability and perfor-

mance in the recycling test, and Sulphur re-

moval could still reach 99% after five reactions 

without additional treatment. In addition, 

TiO2@Ni-Al and ZnO@Ni-Al are heterogeneous 

catalysts that are easy to recover from a reac-

tion system. The effects of ODS reaction varia-

bles were investigated. The optimum require-

ments were 30 min of reaction time, 50 °C of 

operating temperature, 2.5 mL of hydrogen 

peroxide, and 0.25 g of catalyst. This research 

demonstrated the possibility of synthesizing 

TiO2@Ni-Al and ZnO@Ni-Al composites with 

encouraging catalytic performance for the 

desulfurization of fuel oil, which could be ad-

vantageous to the petrochemical sectors. 
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