

Research Article

Recycle Performance of Heterogeneous Catalyst Metal Oxides-Based Layered Double Hydroxide for Oxidative Desulfurization Process of 4-methyldibenzothiophene

Nur Ahmad^{1,2}, R. Rohmatullaili¹, Yulizah Hanifah^{1,2}, Sahrul Wibian², A. Amri², Alfan Wijaya², M. Mardiyanto³, Risfidian Mohadi⁴, Idha Royani⁴, Aldes Lesbani^{1,4,*}

¹Doctoral Program of Natural Science, Graduate School Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Sumatera Selatan, 30139, Indonesia.

²Research Center Inorganic Center of Inorganic Materials and Complexes, Universitas Sriwijaya, Sumatera Selatan, 30139, Indonesia.

³Department of Pharmacy, Faculty of Mathematics and Natural Science, Sriwijaya University, Indralaya, Ogan Ilir, 30662, Indonesia.

⁴Master Program of Material Science, Graduate School Universitas Sriwijaya, Sumatera Selatan, 30139, Indonesia.

Received: 7th September 2023; Revised: 7th October 2023; Accepted: 10th October 2023
Available online: 16th October 2023; Published regularly: December 2023

Abstract

The desulfurization of oil must be resolved as soon as possible due to a variety of issues, including environmental contamination and protection regulations. It was believed that oxidative desulfurization (ODS) was the most promising method. In this research, metal oxide-based layered double hydroxides ($\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$) were effectively synthesized for the ODS of 4-methyldibenzothiophene (4-MDBT). $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$ exhibited superior catalytic performance and high recycling capacity, achieving a 99% removal rate after five reactions in 30 min. The heterogeneous catalyst $\text{TiO}_2@\text{Ni-Al}/\text{ZnO}@\text{Ni-Al}$ is easy to separate and recover from a reaction system. Increased temperature facilitates the transformation of 4-MDBT into 4-MDBTO₂. The influence of H₂O₂'s rapid decomposition rate, which can inhibit oxidation reactions, reduces the catalytic activity as the temperature increases. 4-MDBT Sulphur removal on $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$ is 99.48 and 99.51%, respectively. $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$ have great potential for use in the industry based on these results.

Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (<https://creativecommons.org/licenses/by-sa/4.0>).

Keywords: Recycle catalyst; oxidative desulfurization; heterogeneous; metal oxide; 4-methyldibenzothiophene

How to Cite: N. Ahmad, R. Rohmatullaili, Y. Hanifah, S. Wibian, A. Amri, A. Wijaya, M. Mardiyanto, R. Mohadi, I. Royani, A. Lesbani (2023). Recycle Performance of Heterogeneous Catalyst Metal Oxides-Based Layered Double Hydroxide for Oxidative Desulfurization Process of 4-methyldibenzothiophene. *Bulletin of Chemical Reaction Engineering & Catalysis*, 18(4), 548-558 (doi: 10.9767/bcrec.20034)

Permalink/DOI: <https://doi.org/10.9767/bcrec.20034>

1. Introduction

Fossil fuels will continue to be the mainstay of energy supply for several years to come due to rising populations and worldwide industrial development [1,2]. A number of environmental is-

sues include SO₂ emissions from engines, generators, vessels, and factories [3,4]. The removal of sulfur-based substances from fossil fuels has assumed great significance [5]. In addition, governments across the world have implemented progressively strict rules concerning the highest allowable amount of sulfur in fossil fuels [6]. Hence, the creation of novel ultra-deep desulfurization methods is currently at the frontier of

* Corresponding Author.

Email: aldeslesbani@pps.unsri.ac.id (A. Lesbani)

both research and practice in order to satisfy forthcoming and future fuel sulfur requirements.

The most common desulfurization process, hydrodesulfurization (HDS), operates at high temperatures and hydrogen pressures over catalysts supported by alumina [7]. Benzothiophene and their derivatives are resistant polycyclic aromatic sulfur heterocycles (PASHs), but HDS is extremely effective at desulfurizing aliphatic and some thiophenes organosulfur despite these drawbacks [8]. As a result, numerous identical high-performance ultra-deep desulfurization technologies have been investigated, such as adsorptive desulfurization, biodesulfurization, photocatalytic desulfurization, and oxidative desulfurization, the last of which is thought to be one of the most efficient and potential techniques [9–12].

Sulfones are created when molecules containing sulfur are oxidized by an oxidant during the oxidative desulfurization (ODS) process [13,14]. H_2O_2 , O_2 , and air are a few examples of the several oxidants that have been used [15]. Because of their high reactivities, H_2O_2 has been regarded as the most potent oxidant [16,17]. Water is a by-product of H_2O_2 , an oxidant that cannot dissolve in oil. Due to the reduced mass transfer across the interface between the oil and water phases as a consequence of this, the rate of ODS is decreased in a two-liquid-phase reaction mixture [18]. The sulfones may be extracted from non-polar hydrocarbon streams using liquid-liquid extraction and polar solvents because they have greater polarities than their progenitors [19].

The ODS process heavily relies on the use of a suitable catalyst, which is thought to increase the activity of oxidants [20,21]. As a result, many different kinds of catalysts, including poloxometalates and their composites, supported metal oxides, phase-transfer catalysts, two-dimensional (2D) catalysts with a hexagonal structure, titanate nanotubes, as well as organic acids, have been created and assessed in earlier studies [22]. Researchers from all around the world pay particular attention to layered double hydroxide (LDH), a subcategory of layered materials, because of their exceptional qualities. The metal hydroxide layers in LDH have an interesting structure that is similar to that of brucite. The features of the LDH, such as layer spacing, active site, and surface charge, can be simply adjusted by modification with other materials [23,24].

Metal oxides support layered double hydroxide to increase the active site in the ODS process. Metal oxide catalysts are low-cost, have a

high oxidizing capacity, and have gained significant interest in the degradation and oxidation of environmental pollutants [25]. Generally, it is acknowledged that the most crucial elements for a suitable catalyst are excellent performance, cheap cost, and ease of repair [26,27]. Additionally, the economics of the ODS process may be significantly impacted by the separation and recyclability of catalysts [28,29]. Due to the difficulties in obtaining homogeneous catalysts at the last step of the process, heterogeneous catalysts are thus more beneficial and cost-effective [30].

In this case, the 4-methyldibenzothiophene by ODS was carried out using the metal oxides-based LDH. It investigated how the catalyst's recycle catalyst behavior was affected by the reaction circumstances. To comprehend the outstanding ODS process of catalysts, effect a kinetic study was carried out. Investigated was how well the catalysts performed throughout consecutive desulfurization and recycle catalyst performances.

2. Materials and Methods

2.1 Materials and Instrumental

Without further purification, analytical grade sodium hydroxide (NaOH), hydrogen peroxide (H_2O_2), zinc(II) / nickel(II) / magnesium nitrate hexahydrate ($Zn/Ni/Mg(NO_3)_2 \cdot 6H_2O$), acetonitrile (CH_3CN), aluminum nitrate nonahydrate ($Al(NO_3)_3 \cdot 9H_2O$), titanium(IV) oxide (TiO_2), zinc(II) oxide (ZnO), and distilled water were also used. Various analytical techniques were used to characterize the physicochemical characteristics of the synthesized materials. X-ray diffraction (XRD; Rigaku Miniflex-6000; constructed with $Cu-K\alpha$ radiation, 5 – 70°) was used to study the crystal phases. FTIR spectra were used to determine the chemical groups of catalysts. The samples were produced using the KBr pellet technique, and the results were recorded using a Shimadzu Prestige-21, 500 – 4000 cm^{-1} . Scanning Electron Microscope (SEM, Quanta 650) was carried out at 250 times magnification.

2.2 Catalyst Preparation

First, M^{2+}/Al -LDH ($M = Zn, Ni, Mg$) was synthesized by following a literature method [31,32]. $TiO_2/ZnO@M^{2+}/Al$ -LDH ($M = Zn, Ni, Mg$) was prepared by adding TiO_2 or ZnO to M^{2+}/Al -LDH ($M = Zn, Ni, Mg$) solution with ratio 1.0. Afterward, 150 mL $NaOH$ 0.37 M was added and stirred at 150 rpm for 24 h at $80^\circ C$.

Then, the mixture was calcinated for 10 h at 300 °C and stored.

2.3 ODS Process of Catalyst

The 4-MDBT was dissolved in n-hexane with a concentration of 500 mg/L. A 250 mL chemical flask with two holes was used to oxidize 4-MDBT with H₂O₂ whilst under atmospheric pressure. The chemical flask with two holes was first filled with a particular quantity of H₂O₂ (2 mL). Next, around 0.25 g of the catalyst and 25 mL of 4-MDBT were added, respectively, to the center of the reactor. With the use of an oil bath, the reactor was heated to a range of consistent temperatures of 50 °C while being magnetically agitated. After the reaction had been going for 60 min, the liquid was cooled and separated. In order to ensure that all sulfur was eliminated, the clear mixtures were then extracted twice with 2 mL of acetonitrile. For catalyst recycle performance, the separated catalysts from each reaction might be used again after being cleaned and dried for 12 h in a vacuum oven at 60 °C. For the purpose of ensuring that the findings were reproducible, each experiment was performed three times. The percentage of 4-MDBT conversion followed the Equation (1) [33]:

$$4\text{-MDBT Conversion (\%)} = \left(\frac{C_0 - C_t}{C_0} \right) \times 100 \quad (1)$$

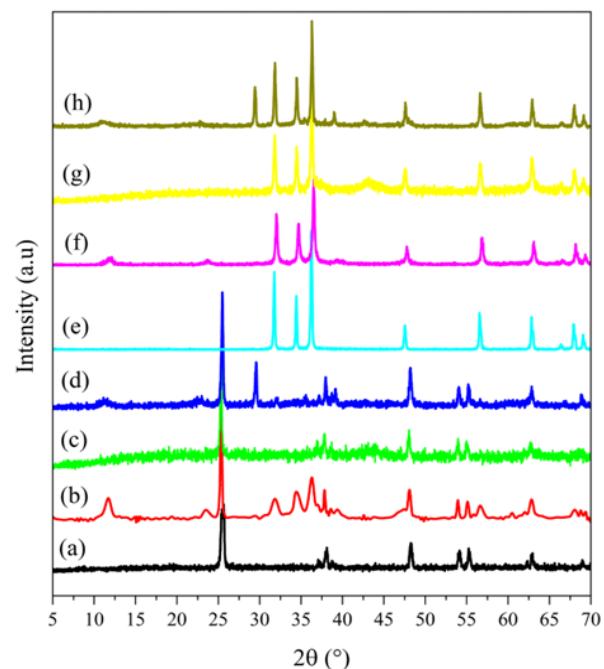


Figure 1. XRD pattern of TiO₂ (a), TiO₂@Zn-Al (b), TiO₂@Ni-Al (c), TiO₂@Mg-Al (d), ZnO (e), ZnO@Zn-Al (f), ZnO@Ni-Al (g), ZnO@Mg-Al (h).

where, C_0 and C_t are the initial and concentrations of 4-MDBT after t time, respectively.

3. Results and Discussion

The X-ray diffraction pattern of TiO₂, TiO₂@Zn-Al, TiO₂@Ni-Al, TiO₂@Mg-Al, ZnO, ZnO@Zn-Al, ZnO@Ni-Al, and ZnO@Mg-Al are shown in Figure 1. The typical reflections (101), (004), (200), (105), (204), and (116) of TiO₂ are shown by the peaks of diffraction at $2\theta = 25.19^\circ, 38.01^\circ, 48.37^\circ, 54.09^\circ, 62.85^\circ$, and 68.94° , (JCPDS card No. 021-1272) [34]. On the other hand, the ZnO primary peak values were observed at $2\theta = 31.69^\circ, 34.33^\circ, 36.36^\circ, 47.55^\circ, 56.53^\circ, 62.84^\circ, 66.50^\circ, 67.91^\circ$, and 69.13° which represent to the typical reflections (100), (002), (101), (102), (110), (103), (200), (112), and (201) (JCPDS card No. 36-1451) [35,36]. Whereas the peaks of layered double hydroxide (Ni-Al, Mg-Al, and Zn-Al) at $2\theta = 9\text{--}12^\circ$ and $60\text{--}62^\circ$ as shown layered materials.

The functional groups adhered to the surfaces of TiO₂, TiO₂@Zn-Al, TiO₂@Ni-Al, TiO₂@Mg-Al, ZnO, ZnO@Zn-Al, ZnO@Ni-Al, and ZnO@Mg-Al are all interpreted using an FTIR instrument (Figure 2). The peaks at 655 and 556 cm⁻¹ for TiO₂ and ZnO were the vibrations of Ti–O and Zn–O, respectively [37]. The bending vibration of H–O–H was attributed to the bands at 3415–3481 cm⁻¹ and 1634–1656 cm⁻¹ for metal oxide-layered double hydroxide

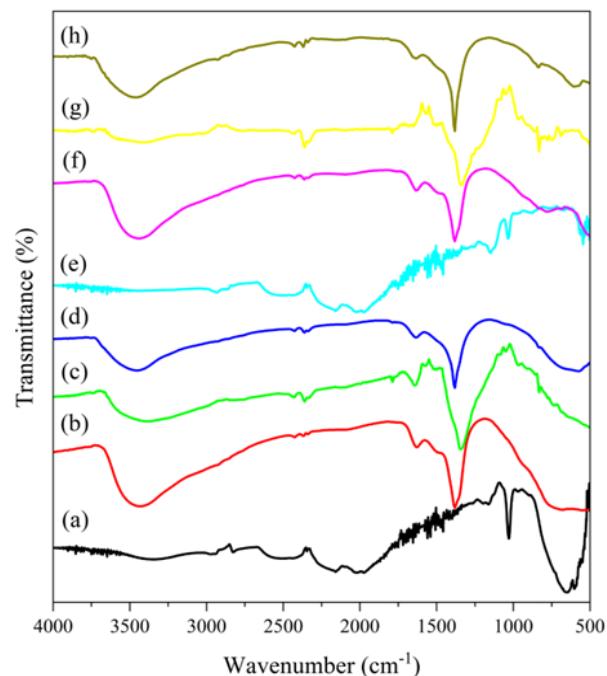


Figure 2. FTIR spectra of TiO₂ (a), TiO₂@Zn-Al (b), TiO₂@Ni-Al (c), TiO₂@Mg-Al (d), ZnO (e), ZnO@Zn-Al (f), ZnO@Ni-Al (g), ZnO@Mg-Al (h).

[38]. NO_3^- stretching was related to the strong band at 1325-1391 cm^{-1} [39,40]. Additionally, the M–O–M, M–O, and O–M–O vibration modes had peaks below 1000 cm^{-1} [41]. $\text{TiO}_2@\text{Zn-Al}$, $\text{TiO}_2@\text{Ni-Al}$, $\text{TiO}_2@\text{Mg-Al}$, $\text{ZnO}@\text{Zn-Al}$, $\text{ZnO}@\text{Ni-Al}$, and $\text{ZnO}@\text{Mg-Al}$ all showed the typical peaks of metal oxides and layered double hydroxide, which proved the effective synthesis of the composites.

SEM images of $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$ are shown in Figure 3. The material's morphology reveals its surface is uneven and rough. In SEM images, roughness is defined as fluctuations, imperfections, or unevenness on the ma-

terial's surface. When there is a lack of uniformity in SEM images, the surface characteristics or features are not constant throughout the entire sample. Roughness and non-uniformity can result from various factors such as the synthesis process, deposition methods, or inherent properties of the material itself.

The oxidative desulfurization is greatly influenced by the catalyst. Thus, the catalyst's ability to be recycled was studied. After every run, the catalyst was centrifuged. After multiple rinsing with n-hexane and ultrasound equipment, the previously used catalyst was desiccated overnight. For the next reaction, the

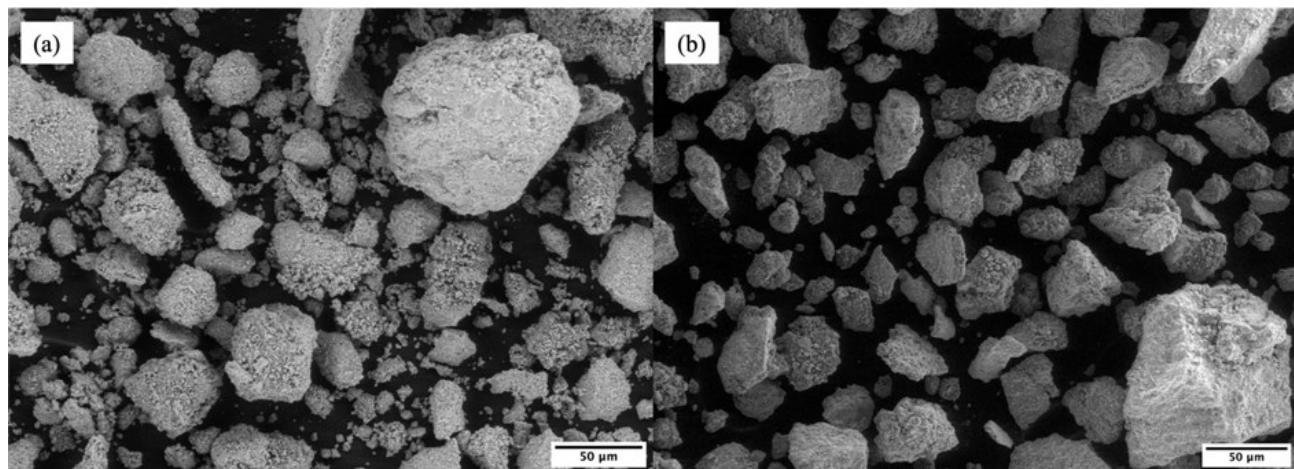


Figure 3. SEM image of $\text{TiO}_2@\text{Ni-Al}$ (a) and $\text{ZnO}@\text{Ni-Al}$ (b).

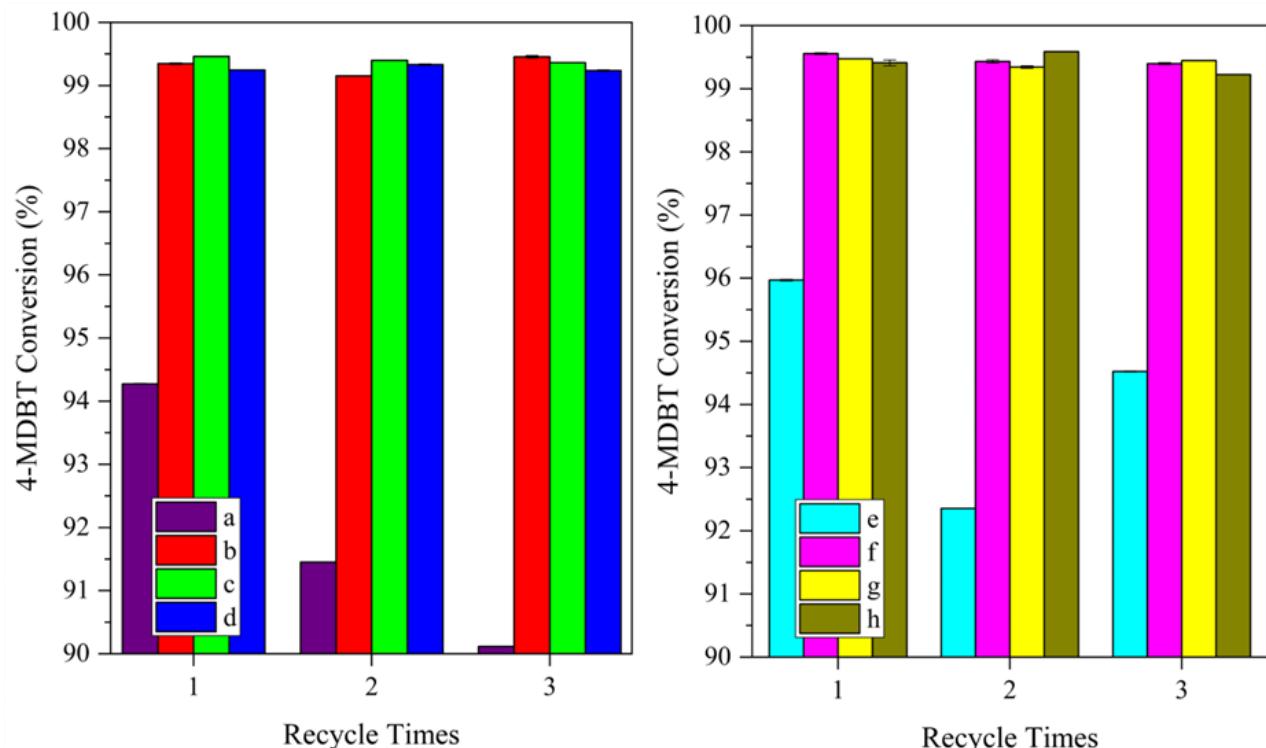


Figure 4. Recycle performances of TiO_2 (a), $\text{TiO}_2@\text{Zn-Al}$ (b), $\text{TiO}_2@\text{Ni-Al}$ (c), $\text{TiO}_2@\text{Mg-Al}$ (d), ZnO (e), $\text{ZnO}@\text{Zn-Al}$ (f), $\text{ZnO}@\text{Ni-Al}$ (g), $\text{ZnO}@\text{Mg-Al}$ (h).

recycled catalyst was treated with the new oxidant and extractant. When H_2O_2 is used as an oxidant, the produced H_2O is extracted with acetonitrile. Using acetonitrile, sulfones might be easily extracted from the 4-MDBT [42]. This confirms that the 4-MDBT has been completely purified of catalyst and oxidant residues. We thus look at the effects of materials based on metal oxides when H_2O_2 is used as an oxidant in the same circumstances. In Figure 4, the findings of TiO_2 , $\text{TiO}_2@\text{Zn-Al}$, $\text{TiO}_2@\text{Ni-Al}$, $\text{TiO}_2@\text{Mg-Al}$, ZnO , $\text{ZnO}@\text{Zn-Al}$, $\text{ZnO}@\text{Ni-Al}$, and $\text{ZnO}@\text{Mg-Al}$ in the ODS of 4-MDBT are shown. In comparison to other catalysts, $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$ demonstrated greater recycling performance.

Catalyst heterogeneity testing in the ODS process is a crucial phase in the development and selection of efficient catalysts for reducing sulfur content in fuel in an efficient and cost-effective manner. To determine whether a catalyst is homogeneous or heterogeneous, the heterogeneity test is crucial. Homogeneous catalysts consist of catalysts that are in the same phase as the reactants. Thus, the catalyst is completely dissolved within the reactant phase. Heterogeneous catalysts, on the other hand, are catalysts in a distinct phase from the reaction material [43]. In this investigation, a heterogeneity test was conducted by combining 0.25 g $\text{TiO}_2@\text{Ni-Al}/\text{ZnO}@\text{Ni-Al}$ and 25 mL 4-MDBT. Separating the catalyst from the 4-MDBT solution after 10 min. Between 20 and

30 min were devoted to the ODS procedure. The ODS results are depicted in Figure 5, which demonstrates that there is no significant change in the sulfur content, indicating that $\text{TiO}_2@\text{Ni-Al}/\text{ZnO}@\text{Ni-Al}$ is a heterogeneous catalyst. Because they exist in distinct phases, heterogeneous catalysts are simple to separate and recover from a reaction system [44]. After the reaction has been completed, the solid catalyst can be removed, cleaned, and utilized in the next cycle reaction.

The impact of reaction time on the oxidative desulfurization of 4-MDBT was examined during the course of 10–60 min at a temperature of 50 °C and a catalyst dose of $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$ was 0.25 g in order to optimize the following critical factors. Figure 6 shows that the elimination of 4-MDBT using H_2O_2 oxidant improves when response time increases from 10 to 60 min. Because they boost contacts between 4-MDBT and $\text{TiO}_2@\text{Ni-Al}/\text{ZnO}@\text{Ni-Al}$, which enhances conversion rates, longer reaction periods often improve the oxidation activity's kinetics and catalytic efficacy [45]. As a result of 4-MDBT molecules utilizing all active species and decreasing the likelihood of 4-MDBT oxidation on the catalyst surface, 4-MDBT conversion does not vary considerably after 30 min. As a consequence, it was decided that 30 min would be the appropriate response time for further research.

The effect of reaction temperature was examined, as indicated in Figure 7, ascribed to

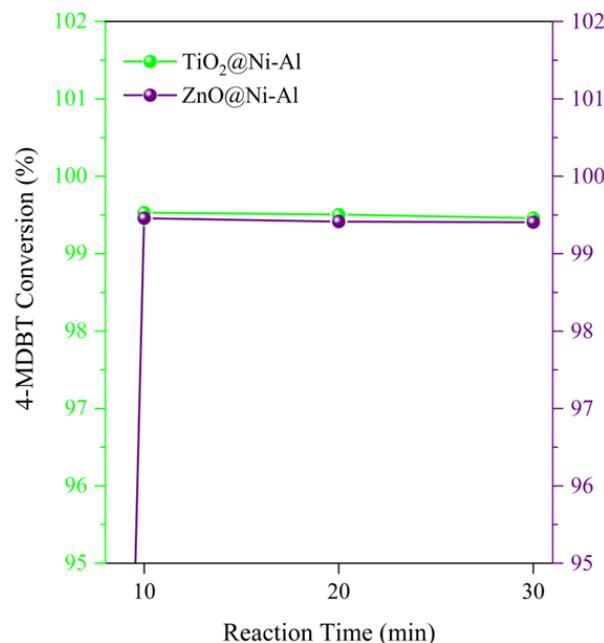


Figure 5. The heterogeneity of $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$.

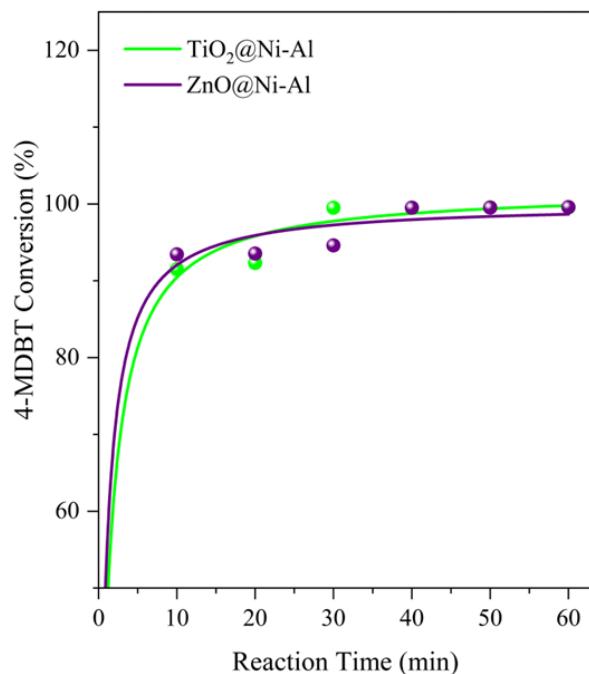


Figure 6. The influence of reaction time.

the significance of reaction temperature on ODS. It is clear that temperatures used could somewhat improve the catalytic activity. According to Wei *et al.* [46], oxidant availability might rise dramatically at higher temperatures, favoring the chemical interaction between 4-MDBT and the oxidant. In the current study, $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$ eliminating 99.48 and 99.51 % after 30 min was reported at 30 °C. As could be observed, the conversion of

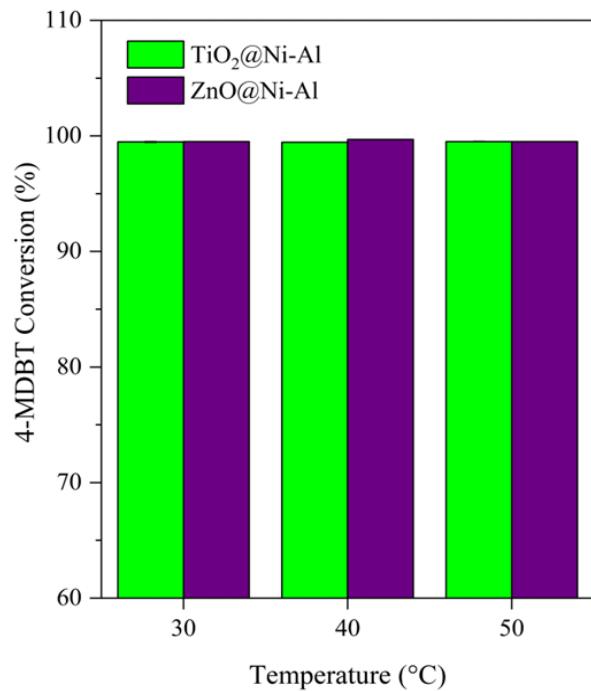


Figure 7. Temperature's effect on ODS.

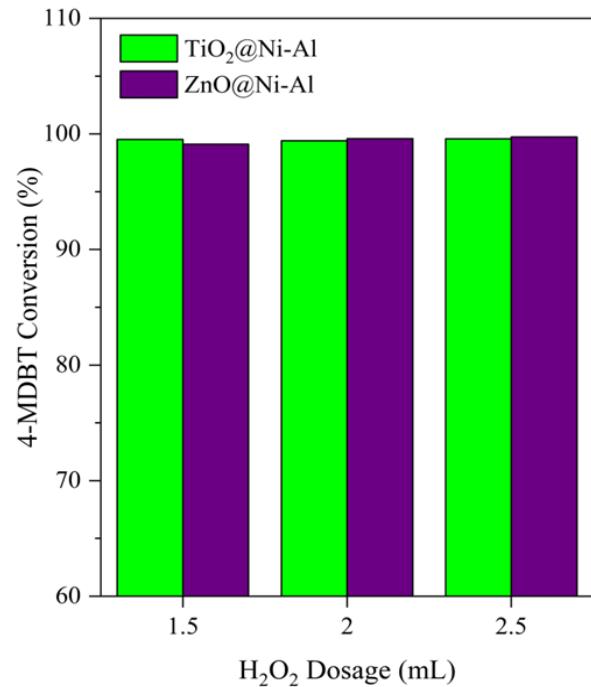


Figure 8. Effect of H_2O_2 dosage.

4-MDBT occurred at 99.51 and 99.69 % for $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$, respectively, when the reaction temperature was raised to 50 °C. These data demonstrate that increased temperature aids in the conversion of 4-MDBT to the associated 4-MDBTO₂. The influence of H_2O_2 's rapid breakdown rate, which may stifle oxidation reactions, causes the catalytic activity to decline at temperature rises [47,48]. The outcome at 50 °C was effective for 4-MDBT conversion and beneficial for energy conservation.

The efficiency of ODS is greatly influenced by the kind and quantity of oxidant. H_2O , an ecologically friendly byproduct, was the oxidation product of H_2O_2 . Furthermore, high oxidant concentrations create more oxidizing species, which quickens the conversion of 4-MDBT. To determine the appropriate oxidant dose, a desulfurization examination of 4-MDBT using the $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$ catalysts with varying oxidant doses was carried out. According to Figure 8, more H_2O_2 /4-MDBT results in higher efficiency of ODS. This is due to an increase in the number of catalytically active peroxy molecules produced [49]. When H_2O_2 was added in amounts up to 2.5 mL, the effectiveness of 4-MDBT elimination increased. The activity can be hampered by the potential for entering water to collect on the catalyst surface.

The impact of catalyst dose on ODS performance was looked at since it is vital for use in the industry. The sulfur removal percentage

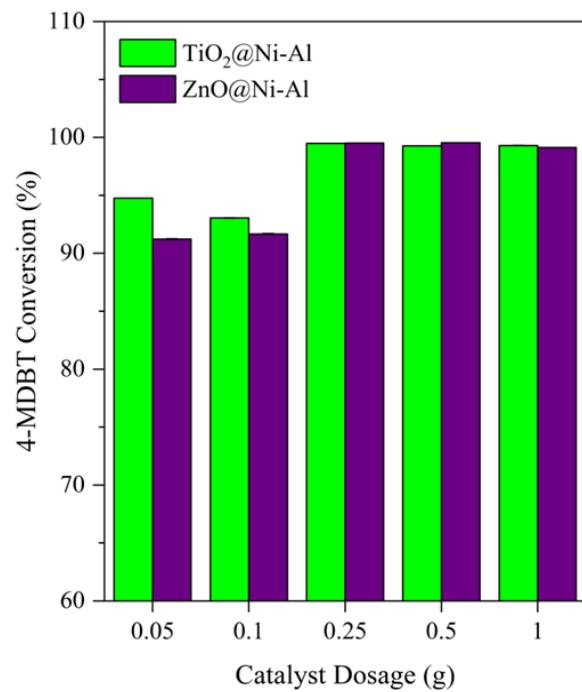


Figure 9. The influences dosage of the catalyst.

for 4-MDBT is greatly improved by increasing the catalyst quantity up to 1 g, as shown in Figure 9, due to an increase in the system's active sites. The catalyst's desulfurization activity did not, however, improve when the dose was raised to 1 g. Additionally, increasing the catalyst dose to 1 g decreased the sulfur removal percentage and, when accounting for the economic cost, might significantly increase the process cost [33]. As a consequence, the catalyst's recommended dosage was found to be 0.25 g. The sulfur removal percentage for 4-MDBT on $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$ is 99.48 and 99.51%, respectively. The proposed ODS mechanism for 4-MDBT is displayed in Figure 10. It has been proven that H_2O_2 intermediates frequently play a crucial part in catalysis during ODS reactions. This information led to the supposition that $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$ first interacted with H_2O_2 to create H_2O_2 complexes that might oxidize 4-MDBT into the appropriate 4-MDBTO₂.

4. Conclusion

To sum up, layered double hydroxides based on metal oxides were successfully synthesized. The meticulously characterized synthetic samples exhibited excellent catalytic ODS performance in 4-MDBT. The prepared catalyst

demonstrates outstanding stability and performance in the recycling test, and Sulphur removal could still reach 99% after five reactions without additional treatment. In addition, $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$ are heterogeneous catalysts that are easy to recover from a reaction system. The effects of ODS reaction variables were investigated. The optimum requirements were 30 min of reaction time, 50 °C of operating temperature, 2.5 mL of hydrogen peroxide, and 0.25 g of catalyst. This research demonstrated the possibility of synthesizing $\text{TiO}_2@\text{Ni-Al}$ and $\text{ZnO}@\text{Ni-Al}$ composites with encouraging catalytic performance for the desulfurization of fuel oil, which could be advantageous to the petrochemical sectors.

Acknowledgements

This work was supported by Hibah Profesi Universitas Sriwijaya 2023 Grand Number (SP DIPA-023.17.2.677515/2023, SK Rektor 0187/UN9.3.1/SK/2023) as additional output. The authors acknowledge the use of the instrument at Research Center of Inorganic Materials, Sriwijaya University.

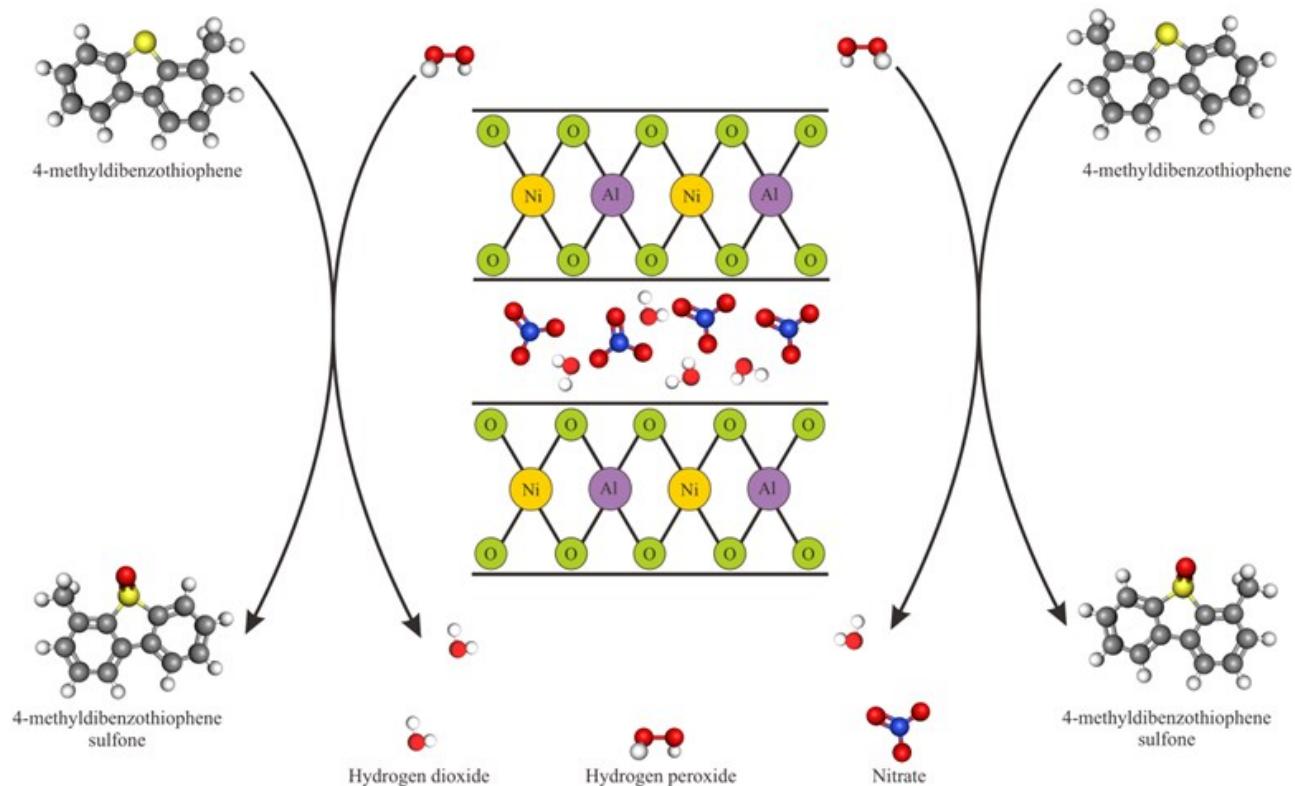


Figure 10. ODS mechanism for 4-MDBT.

CRediT Author Statement

Author Contributions: *N. Ahmad*: Investigation, Writing – Original draft; *R. Rohmatullahi*: Data curation, Software; *Y. Hanifah*: Visualization, Validation; *S. Wibiyani*: Investigation, Software; *A. Amri*: Investigation, Formal Analysis; *A. Wijaya*: Visualization, Formal Analysis; *M. Mardiyanto*: Data curation, Formal Analysis; *R. Mohadi*: Conceptualization, Methodology; *I. Royani*: Validation, Data curation; *A. Lesbani*: Conceptualization, Methodology, Writing – review & editing, Supervision. All authors have read and agreed to the published version of the manuscript.

References

[1] Wu, C., Chen, C., Qi, Z., Chen, J., Wang, Q., Ye, C., Qiu, T. (2023). Facile Synthesis of Efficient Pentaethylenehexamine-Phosphotungstic Acid Heterogeneous Catalysts for Oxidative Desulfurization. *Chinese Journal of Chemical Engineering*, In Press. DOI: 10.1016/j.cjche.2023.04.004.

[2] Wu, P., Song, X., Chen, L., He, L., Wu, Y., Tao, D., He, J., Deng, C., Lu, L., Chao, Y., Hua, M., Zhu, W. (2022). Few-layered hexagonal boron nitride nanosheets stabilized Pt NPs for oxidation promoted adsorptive desulfurization of fuel oil. *Green Energy & Environment*, In Press. DOI: 10.1016/j.gee.2022.08.003.

[3] Chen, H., Liang, C., Xun, S., Yu, Z., Wu, C., He, M., Li, H., Zhu, W. (2023). Oxygen vacancy regulation strategy in V-Nb mixed oxides catalyst for enhanced aerobic oxidative desulfurization performance. *Journal of Colloid and Interface Science*, 641, 289–298. DOI: 10.1016/j.jcis.2023.02.155.

[4] Pham, X.N., Nguyen, M.B., Ngo, H.S., Doan, H. V. (2020). Highly efficient photocatalytic oxidative desulfurization of dibenzothiophene with sunlight irradiation using green catalyst of Ag@AgBr/Al-SBA-15 derived from natural halloysite. *Journal of Industrial and Engineering Chemistry*, 90, 358–370. DOI: 10.1016/j.jiec.2020.07.037.

[5] Mujahid, A., Maryam, A., Afzal, A., Zafar Bajwa, S., Hussain, T., Imran Din, M., Latif, U., Irshad, M. (2020). Molecularily imprinted poly(methyl methacrylate)-nickel sulfide hybrid membranes for adsorptive desulfurization of dibenzothiophene. *Separation and Purification Technology*, 237, 116453. DOI: 10.1016/j.seppur.2019.116453.

[6] Flihh, S.M., Ammar, S.H. (2022). Zeolitic imidazolate framework grafted by cobalt tungstate as an efficient photocatalyst for photocatalytic oxidative desulfurization of dibenzothiophene. *Materials Science in Semiconductor Processing*, 149, 106894. DOI: 10.1016/j.mssp.2022.106894.

[7] Chen, H., Hou, S., Cui, H., Wang, C., Zhang, M., Li, H., Xu, H., Wu, J., Zhu, W. (2023). Construction of amphiphilic and polyoxometalate poly(ionic liquids) for enhanced oxidative desulfurization in fuel. *Journal of Molecular Liquids*, 379, 121650. DOI: 10.1016/j.molliq.2023.121650.

[8] Mgidiana, S., Nyokong, T. (2021). Photocatalytic desulfurization of dibenzothiophene using asymmetrical zinc(II) phthalocyanines conjugated to silver-magnetic nanoparticles. *Inorganica Chimica Acta*, 514, 119970. DOI: 10.1016/j.ica.2020.119970.

[9] Salem, H.M., Abdelrahman, A.A. (2023). Sono-catalytic oxidative desulfurization of fuels using Fe6W18O70@ZrFe2O5. *Journal of Alloys and Compounds*, 956, 170275. DOI: 10.1016/j.jallcom.2023.170275.

[10] Mao, S.-X., Song, J.-Y., Zhu, W.-S., Li, H.-M., Pang, J.-Y., Dang, D.-B., Bai, Y. (2023). Heterogeneous oxidative desulfurization of fuels using amphiphilic mesoporous phosphomolybdate-based poly(ionic liquid) over a wide temperature range. *Fuel*, 352, 128982. DOI: 10.1016/j.fuel.2023.128982.

[11] Masoumi, S., Hosseini, S.A. (2020). Desulfurization of di-benzothiophene from gasoil model using Ni-Co2, Ni-Fe2 and Co-Fe2 nano layered-double hydroxides as photocatalysts under visible light. *Fuel*, 277, 118137. DOI: 10.1016/j.fuel.2020.118137.

[12] Pham, X.N., Nguyen, B.M., Thi, H.T., Van Doan, H. (2018). Synthesis of Ag-AgBr/Al-MCM-41 nanocomposite and its application in photocatalytic oxidative desulfurization of dibenzothiophene. *Advanced Powder Technology*, 29(8), 1827–1837. DOI: 10.1016/j.apt.2018.04.019.

[13] Mahmoudi, V., Mojaverian Kermani, A., Ghahramaninezhad, M., Ahmadpour, A. (2021). Oxidative desulfurization of dibenzothiophene by magnetically recoverable polyoxometalate-based nanocatalyst: Optimization by response surface methodology. *Molecular Catalysis*, 509, 111611. DOI: 10.1016/j.mcat.2021.111611.

[14] Kang, L., Liu, H., He, H., Yang, C. (2018). Oxidative desulfurization of dibenzothiophene using molybdenum catalyst supported on Ti-pillared montmorillonite and separation of sulfones by filtration. *Fuel*, 234, 1229–1237. DOI: 10.1016/j.fuel.2018.07.148.

[15] Song, Y., Bai, J., Jiang, S., Yang, H., Yang, L., Wei, D., Bai, L., Wang, W., Liang, Y., Chen, H. (2021). Co-Fe-Mo mixed metal oxides derived from layered double hydroxides for deep aerobic oxidative desulfurization. *Fuel*, 306, 121751. DOI: 10.1016/j.fuel.2021.121751.

[16] Muhammad, Y., Shoukat, A., Rahman, A.U., Rashid, H.U., Ahmad, W. (2018). Oxidative desulfurization of dibenzothiophene over Fe promoted Co-Mo/Al₂O₃ and Ni-Mo/Al₂O₃ catalysts using hydrogen peroxide and formic acid as oxidants. *Chinese Journal of Chemical Engineering*, 26(3), 593–600. DOI: 10.1016/j.cjche.2017.05.015.

[17] Julião, D., Gomes, A.C., Cunha-Silva, L., Pillinger, M., Gonçalves, I.S., Balula, S.S. (2022). Dichloro and dimethyl dioxomolybdenum(VI)-bipyridine complexes as catalysts for oxidative desulfurization of dibenzothiophene derivatives under extractive conditions. *Journal of Organometallic Chemistry*, 967, 122336. DOI: 10.1016/j.jorgchem.2022.122336.

[18] Moghadam, S.A., Mazloom, G., Akbari, A., Banisharif, F. (2022). Supported vanadium oxide catalyst over HY-zeolite-alumina composite fabricated by extrusion for oxidative desulfurization of dibenzothiophene. *Molecular Catalysis*, 532, 112731. DOI: 10.1016/j.mcat.2022.112731.

[19] Kayedi, N., Samimi, A., Asgari Bajgirani, M., Bozorgian, A. (2021). Enhanced oxidative desulfurization of model fuel: A comprehensive experimental study. *South African Journal of Chemical Engineering*, 35, 153–158. DOI: 10.1016/j.sajce.2020.09.001.

[20] Mgidlana, S., Nwahara, N., Nyokong, T. (2021). Photocatalytic desulfurization of dibenzothiophene using methoxy substituted asymmetrical zinc(II) phthalocyanines conjugated to metal tungstate nanomaterials. *Polyhedron*, 197, 115053. DOI: 10.1016/j.poly.2021.115053.

[21] Manríquez-Ramírez, M.E., Valdez, M.T., Castro, L.V., Flores, M.E., Ortiz-Islas, E. (2022). Application of CeO₂-V₂O₅ catalysts in the oxidative desulfurization of 4,6-dimethyl dibenzothiophene as a model reaction to remove sulfur from fuels. *Materials Research Bulletin*, 153, 111864. DOI: 10.1016/j.materresbull.2022.111864.

[22] Haruna, A., Merican, Z.M.A., Musa, S.G., Rahman, M.B.A. (2023). MOF-808(Zr)-supported with Keggin Polyoxometalates as an efficient oxidative desulfurization catalyst. *Journal of the Taiwan Institute of Chemical Engineers*, 147, 104919. DOI: 10.1016/j.jtice.2023.104919.

[23] Liu, G., Zhang, X., Liu, H., He, Z., Show, P.L., Vasseghian, Y., Wang, C. (2023). Biochar/layered double hydroxides composites as catalysts for treatment of organic wastewater by advanced oxidation processes: A review. *Environmental Research*, 234, 116534. DOI: 10.1016/j.envres.2023.116534.

[24] Mohadi, R., Ahmad, N., Wibyan, S., Zahara, Z.A., Fitri, E.S., Mardiyanto, M., Royani, I., Lesbani, A. (2023). Synthesis of Zn/Al-ZnO Composite Using Zn/Al-Layered Double Hydroxide for Oxidative Desulfurization of 4-Methyldibenzothiophene. *Science and Technology Indonesia*, 8(4), 701–709. DOI: 10.26554/sti.2023.8.4.701-709.

[25] Li, M., Li, P., Zhang, L., Chen, M., Tang, J., Qin, C., Ling Jie Lee, S., Lin, S. (2022). Facile fabrication of ZnO decorated ZnFe-layered double hydroxides @ biochar nanocomposites for synergistic photodegradation of tetracycline under visible light. *Chemical Engineering Journal*, 434, 134772. DOI: 10.1016/j.cej.2022.134772.

[26] Modwi, A., Basith, N.M., Ghoniem, M.G., Ismail, M., Ben Aissa, M.A., Khezami, L., Bououdina, M. (2023). Efficient Pb(II) adsorption in aqueous solution by hierarchical 3D/2D TiO₂/CNNS nanocomposite. *Materials Science and Engineering B: Solid-State Materials for Advanced Technology*, 289, 116191. DOI: 10.1016/j.mseb.2022.116191.

[27] Intachai, S., Nakato, T., Khaorapapong, N. (2021). ZnO decorated on low carbonate NiAl-layered double hydroxide as efficient photocatalyst for methyl orange degradation. *Applied Clay Science*, 201, 105927. DOI: 10.1016/j.clay.2020.105927.

[28] Karim, A.V., Hassani, A., Eghbali, P., Nidheesh, P.V. (2022). Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes. *Current Opinion in Solid State and Materials Science*, 26 (1), 100965. DOI: 10.1016/j.cossms.2021.100965.

[29] Wu, M., Chang, B., Lim, T.T., Oh, W. Da, Lei, J., Mi, J. (2018). High-sulfur capacity and re-generable Zn-based sorbents derived from layered double hydroxide for hot coal gas desulfurization. *Journal of Hazardous Materials*, 360, 391–401. DOI: 10.1016/j.jhazmat.2018.08.015.

[30] Durak, H., Genel, S. (2020). Catalytic hydro-thermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts. *Bioresource Technology*, 309, 123375. DOI: 10.1016/j.biortech.2020.123375.

[31] Palapa, N.R., Ahmad, N., Wijaya, A., Zahara, Z.A. (2023). Facile Fabrication of Layered Double Hydroxide-Lignin for Efficient Adsorption of Malachite Green. *Science and Technology Indonesia*, 8(2), 305–311. DOI: 10.26554/sti.2023.8.2.305-311.

[32] Ahmad, N., Suryani Arsyad, F., Royani, I., Mega Syah Bahar Nur Siregar, P., Taher, T., Lesbani, A. (2023). High regeneration of ZnAl/NiAl-Magnetite humic acid for adsorption of Congo red from aqueous solution. *Inorganic Chemistry Communications*, 150, 110517. DOI: 10.1016/j.inoche.2023.110517.

[33] Sadare, O.O., Ayeni, A.O., Daramola, M.O. (2022). Evaluation of adsorption and kinetics of neem leaf powder (*Azadirachta indica*) as a bio-sorbent for desulfurization of dibenzothiophene (DBT) from synthetic diesel. *Journal of Saudi Chemical Society*, 26(2), 101433. DOI: 10.1016/j.jscs.2022.101433.

[34] Zhao, S.Z., Lu, Y., Lu, R., Hu, Y., Da, Rodriguez, R.D., Chen, J.J. (2023). Constructing Bi- OBr/TiO_2 heterostructure nanotubes for enhanced adsorption/photocatalytic performance. *Journal of Water Process Engineering*, 54, 103972. DOI: 10.1016/j.jwpe.2023.103972.

[35] Cui, J., Ye, L., Chen, X., Li, J., Yang, B., Yang, M., Yang, Q., Yun, D., Sun, S. (2023). Simultaneously promoting adsorption and charge separation in Z-scheme $\text{ZnO}/\text{Cu}_2\text{O}$ heterojunctions for efficient removal of tetracycline. *Applied Surface Science*, 638, 158046. DOI: 10.1016/j.apsusc.2023.158046.

[36] Zhang, K., Wang, Y., Li, L., Jia, L. (2023). Fabrication of alginate-based nanofibers loaded with ZnO nanoparticles for adsorption of tetracyclines from environmental waters. *Materials Today Communications*, 34, 105214. DOI: 10.1016/j.mtcomm.2022.105214.

[37] Ahlawat, W., Dilbaghi, N., Kumar, R., Singhal, N.K., Kaushik, A., Kumar, S. (2023). Adsorption of harmful dyes and antimicrobial studies utilizing recyclable ZnO , its composites with conventionally used activated carbon, and waste orange peel as a greener approach. *Journal of Environmental Chemical Engineering*, 11(3), 110268. DOI: 10.1016/j.jece.2023.110268.

[38] Yu, J., Liu, Z., Yu, F., Bao, W., Peng, B., Wang, G., Zhang, L., Xu, Y., Wang, F. (2022). Enhanced photoelectrochemical performance of ZnO/NiFe -layered double hydroxide for water splitting: Experimental and photo-assisted density functional theory calculations. *Journal of Colloid and Interface Science*, 623, 285–293. DOI: 10.1016/j.jcis.2022.05.001.

[39] Dang, C., Yang, W., Zhou, J., Cai, W. (2021). Porous Ni-Ca-Al-O bi-functional catalyst derived from layered double hydroxide intercalated with citrate anion for sorption-enhanced steam reforming of glycerol. *Applied Catalysis B: Environmental*, 298, 120547. DOI: 10.1016/j.apcatb.2021.120547.

[40] Abdel-Hady, E.E., Mahmoud, R., Hafez, S.H.M., Mohamed, H.F.M. (2022). Hierarchical ternary ZnCoFe layered double hydroxide as efficient adsorbent and catalyst for methanol electrooxidation. *Journal of Materials Research and Technology*, 17, 1922–1941. DOI: 10.1016/j.jmrt.2022.01.042.

[41] Liu, Y., Zhou, R., Qu, J., Han, F., Zhang, S., Xu, X. (2022). Cu nanoparticles-dispersed Mg-Al layered double hydroxides as efficient catalysts for CO_2 conversion with propargyl alcohols. *Applied Catalysis A: General*, 630, 118444. DOI: 10.1016/j.apcata.2021.118444.

[42] Naseri, H., Mazloom, G., Akbari, A., Banisharif, F. (2021). Investigation of Ni, Co, and Zn promoters on Mo/HY modified zeolite for developing an efficient bimetallic catalyst for oxidative desulfurization of dibenzothiophene. *Microporous and Mesoporous Materials*, 325, 111341. DOI: 10.1016/j.micromeso.2021.111341.

[43] Ahmad, N., Yuliasari, N., Arsyad, F.S., Royani, I., Mohadi, R., Lesbani, A. (2023). Catalytic oxidative desulfurization of dibenzothiophene by heterogeneous M_2^+/Al -layered double hydroxide ($\text{M}_2^+ = \text{Zn, Mg, Ni}$) modified zinc oxide. *Iranian Journal of Catalysis*, 13(1), 35–45. DOI: 10.30495/IJC.2023.1972458.1973.

[44] Ye, J., Wen, J., Zhao, D., Zhang, P., Li, A., Zhang, L., Zhang, H., Wu, M. (2020). Macroporous 3D carbon-nitrogen (CN) confined MoO_x catalyst for enhanced oxidative desulfurization of dibenzothiophene. *Chinese Chemical Letters*, 31(10), 2819–2824. DOI: 10.1016/j.cclet.2020.08.004.

[45] López Luna, M., Taboada-Ortega, M.A., Alvarez-Amparán, M.A., Cedeño-Caero, L. (2021). Effect of iron incorporation on W based catalysts for oxidative desulfurization of dibenzothiophene compounds. *Catalysis Today*, 394–396, 336–347. DOI: 10.1016/j.cattod.2021.08.007.

[46] Wei, S., He, H., Cheng, Y., Yang, C., Zeng, G., Kang, L., Qian, H., Zhu, C. (2017). Preparation, characterization, and catalytic performances of cobalt catalysts supported on KIT-6 silicas in oxidative desulfurization of dibenzothiophene. *Fuel*, 200, 11–21. DOI: 10.1016/j.fuel.2017.03.052.

[47] Mohadi, R., Palapa, N.R., Wibiyani, S., Mardiyanto, M., Rohmatullaili, R., Fitri, E.S., Lesbani, A. (2023). Catalytic Oxidative Desulfurization of 4-Methyldibenzothiophene by Ni/Al Modified Titanium Dioxide and Zinc Oxide. *Science and Technology Indonesia*, 8(3), 414–421. DOI: 10.26554/sti.2023.8.3.414-421.

[48] Ahmad, N., Badaruddin, M., Yuliasari, N., Arsyad, F.S., Lesbani, A. (2022). Highly Efficient Catalytic Oxidative Desulfurization of Dibenzothiophene using Layered Double Hydroxide Modified Polyoxometalate Catalyst. *Bulletin of Chemical Reaction Engineering & Catalysis*, 17(4), 821–830. DOI: 10.9767/bcrec.17.4.16373.821-830.

[49] Kermani, A.M., Mahmoodi, V., Ghahramaninezhad, M., Ahmadpour, A. (2021). Highly efficient and green catalyst of {Mo132} nano-balls supported on ionic liquid-functionalized magnetic silica nanoparticles for oxidative desulfurization of dibenzothiophene. *Separation and Purification Technology*, 258, 117960. DOI: 10.1016/j.seppur.2020.117960.