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Abstract

The desulfurization of oil must be resolved as soon as possible due to a variety of issues, including environmental
contamination and protection regulations. It was believed that oxidative desulfurization (ODS) was the most
promising method. In this research, metal oxide-based layered double hydroxides (TiO2@Ni-Al and ZnO@Ni-Al)
were effectively synthesized for the ODS of 4-methyldibenzothiophene (4-MDBT). TiO2@Ni-Al and ZnO@Ni-Al ex-
hibited superior catalytic performance and high recycling capacity, achieving a 99% removal rate after five reac-
tions in 30 min. The heterogeneous catalyst TiO2@Ni-Al/ZnO@Ni-Al is easy to separate and recover from a reaction
system. Increased temperature facilitates the transformation of 4-MDBT into 4-MDBTO2. The influence of H202's
rapid decomposition rate, which can inhibit oxidation reactions, reduces the catalytic activity as the temperature
increases. 4-MDBT Sulphur removal on TiO2@Ni-Al and ZnO@Ni-Al is 99.48 and 99.51%, respectively. TiO2@Ni-Al
and ZnO@Ni-Al have great potential for use in the industry based on these results.
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1. Introduction sues include SO2 emissions from engines, gener-
ators, vessels, and factories [3,4]. The removal
of sulfur-based substances from fossil fuels has
assumed great significance [5]. In addition, gov-
ernments across the world have implemented
progressively strict rules concerning the highest
allowable amount of sulfur in fossil fuels [6].
* Corresponding Author. Hence, the creation of novel ultra-deep desulfu-

Email: aldeslesbani@pps.unsri.ac.id (A. Lesbani) rization methods is currently at the frontier of

Fossil fuels will continue to be the mainstay
of energy supply for several years to come due to
rising populations and worldwide industrial de-
velopment [1,2]. A number of environmental is-
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both research and practice in order to satisfy
forthcoming and future fuel sulfur require-
ments.

The most common desulfurization process,
hydrodesulfurization (HDS), operates at high
temperatures and hydrogen pressures over cat-
alysts supported by alumina [7]. Benzothio-
phene and their derivatives are resistant poly-
cyclic aromatic sulfur heterocycles (PASHs),
but HDS is extremely effective at desulfurizing
aliphatic and some thiophenes organosulfur de-
spite these drawbacks [8]. As a result, numer-
ous identical high-performance ultra-deep
desulfurization technologies have been investi-
gated, such as adsorptive desulfurization, bi-
odesulfurization, photocatalytic desulfuriza-
tion, and oxidative desulfurization, the last of
which is thought to be one of the most efficient
and potential techniques [9-12].

Sulfones are created when molecules con-
taining sulfur are oxidized by an oxidant dur-
ing the oxidative desulfurization (ODS) process
[13,14]. H202, Og, and air are a few examples of
the several oxidants that have been used [15].
Because of their high reactivities, H202 has
been regarded as the most potent oxidant
[16,17]. Water is a by-product of H20O32, an oxi-
dant that cannot dissolve in oil. Due to the re-
duced mass transfer across the interface be-
tween the oil and water phases as a conse-
quence of this, the rate of ODS is decreased in
a two-liquid-phase reaction mixture [18]. The
sulfones may be extracted from non-polar hy-
drocarbon streams using liquid-liquid extrac-
tion and polar solvents because they have
greater polarities than their progenitors [19].

The ODS process heavily relies on the use of
a suitable catalyst, which is thought to increase
the activity of oxidants [20,21]. As a result,
many different kinds of catalysts, including pol-
yoxometalates and their composites, supported
metal oxides, phase-transfer catalysts, two-
dimensional (2D) catalysts with a hexagonal
structure, titanate nanotubes, as well as organ-
ic acids, have been created and assessed in ear-
lier studies [22]. Researchers from all around
the world pay particular attention to layered
double hydroxide (LDH), a subcategory of lay-
ered materials, because of their exceptional
qualities. The metal hydroxide layers in LDH
have an interesting structure that is similar to
that of brucite. The features of the LDH, such
as layer spacing, active site, and surface
charge, can be simply adjusted by modification
with other materials [23,24].

Metal oxides support layered double hydrox-
1de to increase the active site in the ODS pro-
cess. Metal oxide catalysts are low-cost, have a

high oxidizing capacity, and have gained signif-
icant interest in the degradation and oxidation
of environmental pollutants [25]. Generally, it
is acknowledged that the most crucial elements
for a suitable catalyst are excellent perfor-
mance, cheap cost, and ease of repair [26,27].
Additionally, the economics of the ODS process
may be significantly impacted by the separa-
tion and recyclability of catalysts [28,29]. Due
to the difficulties in obtaining homogeneous
catalysts at the last step of the process, hetero-
geneous catalysts are thus more beneficial and
cost-effective [30].

In this case, the 4-methyldibenzothiopehe
by ODS was carried out using the metal oxides-
based LDH. It investigated how the catalyst's
recycle catalyst behavior was affected by the
reaction circumstances. To comprehend the
outstanding ODS process of catalysts, effect a
kinetic study was carried out. Investigated was
how well the catalysts performed throughout
consecutive desulfurization and recycle cata-
lyst performances.

2. Materials and Methods
2.1 Materials and Instrumental

Without further purification, analytical
grade sodium hydroxide (NaOH), hydrogen
peroxide (Hz202), zinc(Il) / nickel(IT) / magnesi-
um nitrate hexahydrate
(Zn/Ni/Mg(NOs3)2.6H20), acetonitrile (CH3CN),
aluminum nitrate nonahydrate
(AI(NO3)3.9H20), titanium(IV) oxide (TiOyg),
zinc(I) oxide (Zn0O), and distilled water were
also used. Various analytical techniques were
used to characterize the physicochemical char-
acteristics of the synthesized materials. X-ray
diffraction (XRD; Rigaku Miniflex-6000; con-
structed with Cu-Ko radiation, 5-70°) was
used to study the crystal phases. FTIR spectra
were used to determine the chemical groups of
catalysts. The samples were produced using
the KBr pellet technique, and the results were
recorded using a Shimadzu Prestige-21, 500-
4000 cm-!. Scanning Electron Microscope
(SEM, Quanta 650) was carried out at 250
times magnification.

2.2 Catalyst Preparation

First, M2+/Al-LDH (M= Zn, Ni, Mg) was syn-
thesized by following a literature method
[31,32]. TiO2/ZnO@M2+/Al-LDH (M= Zn, Ni,
Mg) was prepared by adding TiO2 or ZnO to
M2+/Al-LDH (M= Zn, Ni, Mg) solution with ra-
tio 1.0. Afterward, 150 mL NaOH 0.37 M was
added and stirred at 150 rpm for 24 h at 80 °C.
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Then, the mixture was calcinated for 10 h at
300 °C and stored.

2.3 ODS Process of Catalyst

The 4-MDBT was dissolved in n-hexane
with a concentration of 500 mg/L. A 250 mL
chemical flask with two holes was used to oxi-
dize 4-MDBT with H202 whilst under atmos-
pheric pressure. The chemical flask with two
holes was first filled with a particular quantity
of H202 (2 mL). Next, around 0.25 g of the cata-
lyst and 25 mL of 4-MDBT were added, respec-
tively, to the center of the reactor. With the use
of an oil bath, the reactor was heated to a range
of consistent temperatures of 50 °C while being
magnetically agitated. After the reaction had
been going for 60 min, the liquid was cooled
and separated. In order to ensure that all sul-
fur was eliminated, the clear mixtures were
then extracted twice with 2 mL of acetonitrile.
For catalyst recycle performance, the separated
catalysts from each reaction might be used
again after being cleaned and dried for 12 h in
a vacuum oven at 60 °C. For the purpose of en-
suring that the findings were reproducible,
each experiment was performed three times.
The percentage of 4-MDBT conversion followed
the Equation (1) [33]:
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Figure 1. XRD pattern of TiO2z (a), TiO2@Zn-Al
(b), TiO2@Ni-Al (c), TiO2@Mg-Al (d), ZnO (e),
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where, Co and C; are the initial and concentra-
tions of 4-MDBT after ¢ time, respectively.

3. Results and Discussion

The X-ray diffraction pattern of TiOsg,
TiO2@Zn-Al, TiO2@Ni-Al, TiO:@Mg-Al, ZnO,
Zn0@7Zn-Al, ZnO@Ni-Al, and ZnO@Mg-Al are
shown in Figure 1. The typical reflections
(101), (004), (200), (105), (204), and (116) of
TiO2 are shown by the peaks of diffraction at
20 = 25.19°, 38.01°, 48.37°, 54.09°, 62.85°, and
68.94°, (JCPDS card No. 021-1272) [34]. On the
other hand, the ZnO primary peak values were
observed at 20 = 31.69°, 34.33°, 36.36°, 47.55°,
56.53°, 62.84, 66.50°, 67.91°, and 69.13° which
represent to the typical reflections (100), (002),
(101), (102), (110), (1083), (200), (112), and (201)
(JCPDS card No. 36-1451) [35,36]. Whereas the
peaks of layered double hydroxide (Ni-Al, Mg-
Al, and Zn-Al) at 26 = 9-12° and 60-62° as
shown layered materials.

The functional groups adhered to the sur-
faces of TiOz2, TiO2@Zn-Al, TiO2@Ni-Al,
TiO2@Mg-Al, ZnO, ZnO@Zn-Al, ZnO@Ni-Al,
and ZnO@Mg-Al are all interpreted using an
FTIR instrument (Figure 2). The peaks at 655
and 556 cm™! for TiO2 and ZnO were the vibra-
tions of Ti—O and Zn—0, respectively [37]. The
bending vibration of H-O—H was attributed to
the bands at 3415-3481 cm™! and 1634-1656
cm-! for metal oxide-layered double hydroxide

Wavenumber (cm™)

Figure 2. FTIR spectra of TiOz (a), TiO2@Zn-Al
(b), TiO2@Ni-Al (c), TiO2@Mg-Al (d), ZnO (e),
Zn0@Zn-Al (f), ZnO@Ni-Al (g), ZnO@Mg-Al (h).
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[38]. NOs~ stretching was related to the strong terial's surface. When there is a lack of uni-
band at 1325-1391 cm™! [39,40]. Additionally, formity in SEM images, the surface character-
the M-O-M, M-0O, and O-M-O vibration istics or features are not constant throughout
modes had peaks below 1000 cm-1 [41]. the entire sample. Roughness and non-
Ti02@Zn-Al, TiO2@Ni-Al, TiO@Mg-Al, uniformity can result from various factors such
Zn0@Zn-Al, ZnO@Ni-Al, and ZnO@Mg-Al all as the synthesis process, deposition methods,
showed the typical peaks of metal oxides and or inherent properties of the material itself.
layered double hydroxide, which proved the ef- The oxidative desulfurization is greatly in-
fective synthesis of the composites. fluenced by the catalyst. Thus, the catalyst's
SEM images of TiO2@Ni-Al and ZnO@Ni-Al ability to be recycled was studied. After every
are shown in Figure 3. The material's morphol- run, the catalyst was centrifuged. After multi-
ogy reveals its surface is uneven and rough. In ple rinsing with n-hexane and ultrasound
SEM images, roughness is defined as fluctua- equipment, the previously used catalyst was
tions, imperfections, or unevenness on the ma- desiccated overnight. For the next reaction, the

20
s iy

Figure 3. SEM image of TiO2@Ni-Al (a) and ZnO@Ni-Al (b).
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Figure 4. Recycle performances of TiOz (a), TiO2@Zn-Al (b), TiO2@Ni-Al (c), TiO2@Mg-Al (d), ZnO (e),
Zn0@Zn-Al (f), ZnO@Ni-Al (g), ZnO@Mg-Al (h).
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recycled catalyst was treated with the new oxi-
dant and extractant. When H20: is used as an
oxidant, the produced H20 is extracted with ac-
etonitrile. Using acetonitrile, sulfones might be
easily extracted from the 4-MDBT [42]. This
confirms that the 4-MDBT has been completely
purified of catalyst and oxidant residues. We
thus look at the effects of materials based on
metal oxides when H20: is used as an oxidant
in the same circumstances. In Figure 4, the
findings of TiO2, TiO2@Zn-Al, TiO2@Ni-Al,
TiO2@Mg-Al, ZnO, ZnO@Zn-Al, ZnO@Ni-Al,
and ZnO@Mg-Al in the ODS of 4-MDBT are
shown. In comparison to other catalysts,
TiO2@Ni-Al and ZnO@Ni-Al demonstrated
greater recycling performance.

Catalyst heterogeneity testing in the ODS
process is a crucial phase in the development
and selection of efficient catalysts for reducing
sulfur content in fuel in an efficient and cost-
effective manner. To determine whether a cata-
lyst is homogeneous or heterogeneous, the het-
erogeneity test is crucial. Homogeneous cata-
lysts consist of catalysts that are in the same
phase as the reactants. Thus, the catalyst is
completely dissolved within the reactant phase.
Heterogeneous catalysts, on the other hand,
are catalysts in a distinct phase from the reac-
tion material [43]. In this investigation, a het-
erogeneity test was conducted by combining
0.25 g TiO2@Ni-Al/ZnO@Ni-Al and 25 mL 4-
MDBT. Separating the catalyst from the 4-
MDBT solution after 10 min. Between 20 and

102
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- 100
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Figure 5. The heterogeneity of TiO2@Ni-Al and
ZnO@Ni-Al.

30 min were devoted to the ODS procedure.
The ODS results are depicted in Figure 5,
which demonstrates that there is no significant
change in the sulfur content, indicating that
Ti0O2@Ni-Al/ZnO@Ni-Al is a heterogeneous cat-
alyst. Because they exist in distinct phases,
heterogeneous catalysts are simple to separate
and recover from a reaction system [44]. After
the reaction has been completed, the solid cata-
lyst can be removed, cleaned, and utilized in
the next cycle reaction.

The impact of reaction time on the oxidative
desulfurization of 4-MDBT was examined dur-
ing the course of 10-60 min at a temperature
of 50 °C and a catalyst dose of TiO2@Ni-Al and
ZnO@Ni-Al was 0.25 g in order to optimize the
following critical factors. Figure 6 shows that
the elimination of 4-MDBT using H202 oxidant
improves when response time increases from
10 to 60 min. Because they boost contacts be-
tween 4-MDBT and TiO2@Ni-Al/ZnO@Ni-Al,
which enhances conversion rates, longer reac-
tion periods often improve the oxidation activi-
ty’s kinetics and catalytic efficacy [45]. As a re-
sult of 4-MDBT molecules utilizing all active
species and decreasing the likelihood of 4-
MDBT oxidation on the catalyst surface, 4-
MDBT conversion does not vary considerably
after 30 min. As a consequence, it was decided
that 30 min would be the appropriate response
time for further research.

The effect of reaction temperature was ex-
amined, as indicated in Figure 7, ascribed to

120 TiO,@Ni-Al
ZnO@Ni-Al
S
_5 100 Q o ——9
t=1
S
O
&
o 804
=
<t
60
' ! ' I ! I ' | ! I ! |
0 10 20 30 40 50 60

Reaction Time (min)

Figure 6. The influence of reaction time.
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the significance of reaction temperature on
ODS. It is clear that temperatures used could
somewhat improve the catalytic activity. Ac-
cording to Wei et al. [46], oxidant availability
might rise dramatically at higher tempera-
tures, favoring the chemical interaction be-
tween 4-MDBT and the oxidant. In the current
study, TiO2@Ni-Al and ZnO@Ni-Al eliminating
99.48 and 99.51 % after 30 min was reported at
30 °C. As could be observed, the conversion of

110

[ Tio,@Ni-Al
Bl ZnO@Ni-Al
100

90 +

80

4-MDBT Conversion (%)

70

60 -
30 40 50

Temperature (°C)

Figure 7. Temperature’s effect on ODS.
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Figure 8. Effect of H2O2 dosage.

4-MDBT occurred at 99.51 and 99.69 % for
TiO2@Ni-Al and ZnO@Ni-Al, respectively,
when the reaction temperature was raised to
50 °C. These data demonstrate that increased
temperature aids in the conversion of 4-MDBT
to the associated 4-MDBTO:2. The influence of
H202's rapid breakdown rate, which may stifle
oxidation reactions, causes the catalytic activi-
ty to decline at temperature rises [47,48]. The
outcome at 50 °C was effective for 4-MDBT
conversion and beneficial for energy conserva-
tion.

The efficiency of ODS is greatly influenced
by the kind and quantity of oxidant. H20, an
ecologically friendly byproduct, was the oxida-
tion product of H202. Furthermore, high oxi-
dant concentrations create more oxidizing spe-
cies, which quickens the conversion of 4-
MDBT. To determine the appropriate oxidant
dose, a desulfurization examination of 4-MDBT
using the TiO2@Ni-Al and ZnO@Ni-Al catalysts
with varying oxidant doses was carried out.
According to Figure 8, more H202/4-MDBT re-
sults in higher efficiency of ODS. This is due to
an increase in the number of catalytically ac-
tive peroxo molecules produced [49]. When
H20:2 was added in amounts up to 2.5 mL, the
effectiveness of 4-MDBT elimination increased.
The activity can be hampered by the potential
for entering water to collect on the catalyst sur-
face.

The impact of catalyst dose on ODS perfor-
mance was looked at since it is vital for use in
the industry. The sulfur removal percentage

110

[ Tio,@Ni-Al
1 I ZnO@Ni-Al

4-MDBT Conversion (%)

005 01 025 05 1
Catalyst Dosage (g)

Figure 9. The influences dosage of the catalyst.
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for 4-MDBT is greatly improved by increasing
the catalyst quantity up to 1 g, as shown in Fig-
ure 9, due to an increase in the system's active
sites. The catalyst's desulfurization activity did
not, however, improve when the dose was
raised to 1 g. Additionally, increasing the cata-
lyst dose to 1 g decreased the sulfur removal
percentage and, when accounting for the eco-
nomic cost, might significantly increase the
process cost [33]. As a consequence, the cata-
lyst's recommended dosage was found to be
0.25 g. The sulfur removal percentage for 4-
MDBT on TiO2@Ni-Al and ZnO@Ni-Al is 99.48
and 99.51%, respectively. The proposed ODS
mechanism for 4-MDBT 1is displayed in Figure
10. It has been proven that H20: intermediates
frequently play a crucial part in catalysis dur-
ing ODS reactions. This information led to the
supposition that TiO2@Ni-Al and ZnO@Ni-Al
first interacted with H20:2 to create H202 com-
plexes that might oxidize 4-MDBT into the ap-
propriate 4-MDBTOs.

4. Conclusion

To sum up, layered double hydroxides based
on metal oxides were successfully synthesized.
The meticulously characterized synthetic sam-
ples exhibited excellent catalytic ODS perfor-
mance in 4-MDBT. The prepared catalyst

demonstrates outstanding stability and perfor-
mance in the recycling test, and Sulphur re-
moval could still reach 99% after five reactions
without additional treatment. In addition,
TiO2@Ni-Al and ZnO@Ni-Al are heterogeneous
catalysts that are easy to recover from a reac-
tion system. The effects of ODS reaction varia-
bles were investigated. The optimum require-
ments were 30 min of reaction time, 50 °C of
operating temperature, 2.5 mL of hydrogen
peroxide, and 0.25 g of catalyst. This research
demonstrated the possibility of synthesizing
TiO2@Ni-Al and ZnO@Ni-Al composites with
encouraging catalytic performance for the
desulfurization of fuel oil, which could be ad-
vantageous to the petrochemical sectors.
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