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Abstract 

Biochar material is a renewable adsorbent widely used for treating contaminated wastewater. The hydrothermal 

carbon (HTC) were prepared from low polymeric sugars and low concentration glucose under hydrothermal car-

bonization reactions without using dispersants. The composition and structure of the biochar produced were char-

acterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron micros-

copy (SEM), Raman spectroscopy (Raman), and N2 adsorption-desorption, indicating that amorphous graphitic car-

bon was obtained. Experimental results from the static adsorption of Cr(VI)-contaminated wastewater showed 

that HTCP-2 exhibited the highest adsorption capacity for Cr(VI), with a maximum adsorption capacity of 22.62 

mg.g−1.The adsorption Cr(VI), MB, and RhB by the synthesized biochar all conformed to the pseudo-second-order 

kinetic model and Freundlich isotherm, suggesting a multilayer chemical adsorption process. Additionally, the 

synthesized HTC surface is enriched with a significant amount of oxygen-rich functional groups, which also has 

good adsorption performance for cationic dyes. Furthermore, the test results of fluorescence, photocurrent, and im-

pedance indicate that HTCP-2 possesses the ability to generate and separate photoinduced charge carriers. This 

implied that HTCP-2 can be used for the preparation of adsorption photocatalysts, which effectively remove envi-

ronmental pollutants through the synergistic effect of adsorption-photocatalysis. This study provides a research 

foundation for advancing water treatment technologies.  
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1. Introduction 

Wastewater containing Cr(VI) from indus-

tries such as electroplating, metallurgy, and 

leather production is characterized by its high 

toxicity, carcinogenicity, and mobility in water. 

Moreover, Cr(VI) can accumulate in organisms 
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and can not be naturally photodegraded, mak-

ing it a prioritized pollutant for global control 

[1–7]. Currently, the technologies for treating 

Cr(VI)-contaminated wastewater include ad-

sorption [1,2], ion exchange [3], membrane sepa-

ration [4], chemical reduction [5], and photo-

catalytic reduction [6]. The adsorption method, 

commonly used for the treatment of Cr(VI)-

contaminated wastewater [1,2,7–10], has the 

advantages of high selectivity, low energy con-
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sumption, minimal by-products, and strong ad-

sorption capacity. Meanwhile, adsorbents, such 

as Mn-incorporated ferrihydrite [1], montmoril-

lonite nanocomposites [2], biochar [9], silicas 

[10], and so on, adsorb Cr(VI) to the active sites 

through mechanisms such as adsorption, chela-

tion, or ion exchange. Furthermore, the purifi-

cation of Cr(VI)-contaminated wastewater can 

be achieved by utilizing adsorption or the syn-

ergistic effect of adsorption combined with pho-

tocatalysis. Due to the close correlation be-

tween the effectiveness of adsorption in elimi-

nating environmental pollutants and the type 

of adsorbent used, the development of high-

performance adsorbents is of significant im-

portance for the treatment of environmental 

wastewater. 

Biomass can be pyrolyzed under anaerobic 

or oxygen-limited conditions to obtain carbon-

rich, highly aromatic, and porous solid biochar 

materials [11], which possess abundant pore 

structures, a large specific surface area, and 

rich oxygen-containing functional groups on 

their surface. Biochar materials also exhibit ex-

cellent optical, electrical, mechanical, and 

chemical properties, finding wide applications 

in the fields of environment and energy [11–

15]. The methods for preparing biochar materi-

als include the template method [11], chemical 

vapor deposition (CVD) [12], high-temperature 

pyrolysis [13], and hydrothermal carbonization 

[14–16]. Among them, hydrothermal carboniza-

tion is an exothermic reaction in which carbo-

hydrates are used as raw materials and water 

serves as the reaction medium. This reaction 

takes place at certain solid-liquid ratios, tem-

peratures (100–250 °C), reaction times (4–24 h) 

and (0.5–16.5 MPa), with the solid products as 

the target products [14–19]. Hydrothermal car-

bonization technology offers advantages such 

as low raw material costs, low energy consump-

tion, simple operation, a high conversion rate, 

and controllable preparation of carbon materi-

als [17–20]. Hydrothermal carbonization tech-

nology differs fundamentally from the combus-

tion process that releases CO2 and can effec-

tively reduce CO2 greenhouse gas emissions. In 

this regard, hydrothermal carbonization is con-

sidered a promising technology for the produc-

tion of biochar materials. 

The synthetic method of producing carbon 

materials using biomass as raw materials 

aligns with the trends of economic, low-energy 

consumption, and environmentally sustainable 

development. Various natural substances, such 

as sugars (glucose, fructose, trehalose, xylan, 

etc.), lignin, cellulose, biomass waste, etc. [17–

27], can be used to prepare hydrothermal car-

bon and serve as adsorbents for the adsorption 

treatment of U(VI) [18], Cr(VI) [1,2,17,21,22], 

copper ions [25], methylene blue [19,25], blue 

41 [13], RhB [24], iodine [25], nitrate [12], and 

CO2 [20].  

It has been shown that carbon microspheres 

are the main product of hydrothermal carboni-

zation of sugars [11,28], which is a complex 

chemical process involving reactions such as 

dehydration, condensation, polymerization, 

and aromatization [26–29]. Considering the re-

lationship between material structure and 

properties, the synthesis of carbon materials 

with excellent performance can be controlled 

through morphology control, performance mod-

ification, and analysis of hydrothermal carboni-

zation mechanisms [14,28–32]. Ischia [28] uti-

lized the hydrothermal carbonization reaction 

of glucose to study the reaction pathways and 

kinetics. He et al. [14] systematically investi-

gated the reaction pathways and kinetics of the 

hydrothermal carbonization of glucose at 

180℃, determining the structures of interme-

diates and the final chemical product. Their 

s t u d i e s  c o n f i r m e d  t h a t  5 -

hydroxymethylfurfural (HMF) is the dominant 

intermediate product and the sole precursor of 

hydrothermal carbon, and they calculated the 

conversion rate of glucose and the yield of hy-

drothermal carbon. Also, the influence of reac-

tion temperature on the shape and size of hy-

drothermal carbon was analyzed. Sun et al. 

[17] prepared porous carbon microspheres 

through a two-step method involving hydro-

thermal carbonization and KOH or NH3 activa-

tion. Experimental results showed that the 

Cr(VI) adsorption by porous carbon micro-

spheres followed Langmuir monolayer adsorp-

tion. Yao et al. [30] employed sulfuric acid-

catalyzed hydrothermal carbonization to pre-

pare glucose-based porous carbon materials 

while achieving improved yield. The resulting 

mesoporous materials with negatively surfaces 

charged exhibited optimal adsorption perfor-

mance for methylene blue (MB). Jung et al. 

[26] investigated the effect of salt additives 

(KCl and CaCl2) and reactor stirring on the 

preparation of carbon spheres through fructose 

hydrothermal carbonization. The study re-

vealed that the addition of salts enhanced the 

reaction rate without altering the size of the 

products. Li et al. [31] utilized the glucose hy-

drothermal method to prepare carbon micro-

spheres with regular shapes and abundant ox-

ygen functional groups. The reaction tempera-

ture (180–270 °C) influenced the chemical 

properties and morphology of the carbon micro-

spheres. Increasing the glucose concentration 



 

Bulletin of Chemical Reaction Engineering & Catalysis, 18 (3), 2023, 487 

Copyright © 2023, ISSN 1978-2993 

(0.3–0.7 M) resulted in larger carbon spheres, 

while the morphology of the carbon spheres re-

mained unaffected. The above findings contrib-

ute to the advancement of hydrothermal car-

bonization technology. However, the reaction of 

hydrothermal preparation of biochar is uncon-

trollable and complex, and the reaction path-

ways and kinetics may differ for various sugar 

hydrothermal carbonization processes. In the 

existing studies, the performance of biochar 

prepared from low-polymerized sugars has not 

been thoroughly and systematically investigat-

ed. The use of dispersants or morphology con-

trollers leads to higher raw material input 

costs and complex synthesis routes. In addition, 

higher reaction temperatures not only increase 

energy consumption, but also lead to the reduc-

tion of functional groups on the surface of bio-

char. 

From the perspective of environmental sus-

tainability, the utilization of biomass feedstock 

for the preparation of hydrothermal carbon 

holds great potential. According to the afore-

mentioned analysis, this study aims to investi-

gate the composition and structure of hydro-

thermal carbonization products derived from 

low-concentration glucose solutions and low-

polymerization sugars without the use of dis-

persants and morphology-controlling agents. 

The synthesis mechanism of HTC by the low-

temperature hydrothermal method was pro-

posed according to the characterization analy-

sis of HTC composition and structure. System-

atically investigated the kinetic and thermody-

namic characteristics of HTC adsorbed pollu-

tants, as well as the selectivity using Cr(VI) 

and organic dye pollutants as simulations of 

pollutants. The photoelectric properties of HTC 

were investigated, that providing significant 

potential for the synergistic treatment of pollu-

tants through adsorption-photocatalysis. 

 

2. Materials and Methods 

2.1 Synthesis of Carbon Microspheres 

Accurately weighed 1.4400 g, 2.8800 g, and 

4.3200 g of glucose, dissolved them in 80.00 mL 

of deionized water, and magnetically stirred for 

20 min to obtain a glucose aqueous solution. 

Further, the above solution was transferred to 

a stainless steel autoclave lined with polytetra-

fluoroethylene reactor at 180 °C for 12 h. After 

the reaction is complete, cool naturally to room 

temperature, then wash with deionized water. 

The obtained brown product is dried in a 100 

°C oven for 4 h. The dried samples are ground 

to obtain carbon microsphere powder. The ob-

tained samples prepared with low to high glu-

cose concentrations were named HTCP-1, 

HTCP-2 and HTCP-3, respectively. The carbon 

microspheres labeled HTCR, HTCZ, and HTCK 

were obtained by the same synthesis route us-

ing a 0.2 mol.L−1 solution of lactose, sucrose, 

and chitosan, respectively. 

 

2.2 Characterizations of HTC 

The crystallinity of the synthesized HTC 

was analyzed by the Rigaku Corporation Ulti-

ma IV X-ray powder diffractometer using Cu 

target K radiations (λ = 0.1541 nm) and inci-

dent angle range of 10–80°. The compositional 

and structural characterization has been car-

ried out on a Renishaw Invia Raman spectrom-

eter and a Bruker ALPHA FTIR spectrometer. 

The morphologies of the samples were observed 

by a Hitachi SU8600 field-emission scanning 

electron microscope (FESEM), and the acceler-

ating voltage of the test was 10 kV. The specif-

ic surface area of the HTC was measured by 

the ASAP 2460 Multi-station Automatic Specif-

ic Surface Area and Pore Size Analyzer. The 

materials were treated under a nitrogen at-

mosphere at 200 ℃ for 12 h before testing, and 

the experimental results were analyzed by the 

BJH model, which was used to calculate the 

pore size distribution of the HTC. The diffuse 

reflection spectrum was obtained by UV-vis dif-

fuse reflectance absorption spectroscopy (UV-

vis DRS) of PELambda750, USA, BaSO4 was 

used as the blank substrate, and the spectral 

scanning range was 250–800 nm. The Shang-

hai Chenhua CHI660E electrochemical work-

station was used to test the photocurrent (i–t) 

and electrochemical impedance (EIS) of the 

samples, and the three-electrode system was 

used for the test, with Pt as the auxiliary elec-

trode and Ag/AgCl as the reference electrode. 

 

2.3 Adsorption Experiment (Adsorption Capac-

ity and Removal Rate) 

The experiments of Cr(VI) adsorption by the 

prepared HTC were conducted under light 

avoidance conditions at room temperature of 

25 ℃, while the rate of magnetic stirring was a 

fixed 460 rpm and the stirring was lasting for 

18 h. Aqueous Cr(VI) with concentrations rang-

ing from 10 to 100 mg.L−1 (10, 20, 30, 40, 60, 

80, and 100 mg.L−1, pH 6) was prepared, and 

the dosage of HTC was 1 g.L−1. After a speci-

fied reaction time, 4 mL of the reaction solution 

is taken from the reaction system and separat-

ed by centrifugation to obtain a clear solution 

of adsorbed Cr(VI). The concentration of Cr(VI) 

is then measured using the diphenylcarbazide 

spectrophotometric method at 540 nm. 
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To investigate the effect of pH on the ad-

sorption performance of Cr(VI) by HTCP-2, 30 

mg·L−1 of Cr(VI) was used as a simulated pollu-

tant, and the pH of the Cr(VI) solution was reg-

ulated to be 2, 3, 4, 6, and 8 with 0.2 M H2SO4 

and 0.2 M NaOH, and the same stirring rate 

and adsorption time were maintained. The con-

centration of Cr(VI) in the solution was detect-

ed using the above method. The adsorption se-

lectivity of HTCP-2 was investigated using the 

same experimental method. The pH value of so-

lution was 6, the same stirring rate and adsorp-

tion time were maintained by utilizing a solu-

tion containing 10 mg.L−1 methylene blue (MB), 

Rhodamine B (RhB) and Cr(VI) as contami-

nants, respectively. The concentrations of MB 

and RhB after adsorption were measured by a 

UV–vis spectrophotometer at 664 nm and 554 

nm. 

Equation (1) [1,2] was used to calculate the 

adsorption removal rate of Cr(VI) by carbon mi-

crospheres. Furthermore, the equilibrium ad-

sorption capacity of HTCP-2 for Cr(VI) was cal-

culated using Equation (2) [33,34]. Adsorption 

kinetics. Fitting the adsorption behavior of hex-

avalent chromium on HTC using pseudo-first-

order kinetic and pseudo-second-order kinetic 

models (Equations (3) and (4) [33,34]). The 

Langmuir adsorption isotherm equation 

(Equation (5) [34–36]) and the Freundlich ad-

sorption isotherm equation (Equation (6) 

[21,30]) were used to describe the monolayer or 

multilayer adsorption process on the surface of 

HTC.  

 

Adsorption removal rate [33,34]: 

 

(1) 

 

Adsorption capacity [33,34]: 

 

(2) 

 

Pseudo-first-order kinetic model [33,34]: 
 

(3) 
 

Pseudo-second-order kinetic model [33,34]: 

 

(4) 

 

Langmuir model [21,30,34–36]: 

 

(5) 

 

Freundlich model [21,30]: 
 

(6) 
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Figure 1. XRD patterns of as-synthesized HTC, (a) HTCP-1, HTCP-2, and HTCP-3, (b) HTCR, HTCZ, 

and HTCK. 
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where, Qe represents the equilibrium adsorp-

tion capacity (mg.g−1), c0, ct, and ce are the ini-

tial concentration, concentration at time t, and 

equilibrium concentration of Cr(VI) aqueous so-

lution (mg.L−1), respectively, m is the mass of 

the adsorbent (mg), V is the volume of the solu-

tion (L), and kL and kF represent the Langmuir 

and Freundlich constants, respectively. 

 

3. Results and Discussion 

3.1. Structure and Composition 

The XRD patterns of carbon microspheres 

prepared by hydrothermal carbonization with 

different sugars as raw materials were provid-

ed in Figure 1. The similar shape of the diffrac-

tion peaks of the as-synthesized HTCP-1, 

HTCP-2, HTCP-3, HTCR, HTCZ, and HTCK, 

suggesting the formation of similar composi-

tions of the products. The XRD patterns of 

HTCP-1, HTCP-2, and HTCP-3, shown in Fig-

ure 1(a), are hydrothermal carbonization prod-

ucts obtained from different glucose concentra-

tions as starting materials. The diffraction 

peak at 2θ angles of 22.6° corresponded to the 

(002) plane of graphite carbon. The broadness 

of the diffraction peak indicated the formation 

of amorphous graphitized carbon material. The 

weak diffraction peaks exist at 42.8° in Figure 

1, corresponding to the plane (100) of graphite 

[27,31,32]. The XRD pattern results revealed 

that as the concentration of glucose solution in-

creases, the intensity of XRD diffraction peaks 

of glucose-derived carbon spheres decreases, in-

dicating a decrease in the degree of graphitiza-

tion of the produced carbon material. Figure 

1(b) showed the XRD patterns of HTCR, HTCZ, 

and HTCK obtained by hydrothermal carboni-

zation prepared from sucrose, lactose, and chi-

tosan, which showed weaker intensity of XRD 

diffraction peaks than that of HTCP. This is 

possibly due to the hydrothermal carbonization 

process using disaccharides and polysaccha-

rides as raw materials, which involves the ini-

tial hydrolysis to form monosaccharides. The 

hydrolysis process consumes energy and affects 

the formation of hydrothermal carbon. 

The chemical bonds of the synthesized char 

materials were analyzed by Fourier transform 

infrared (FTIR) spectroscopy (Figure 2(a)). The 

prepared hydrothermal carbon materials had 

similar infrared profiles. The absorption peak 

at 795 cm−1 can be ascribed to the out-of-plane 

bending vibration of C−H in the RCH=CHR 

groups [21,27]. The bands at 1194 cm−1 and 

1020 cm−1 were assigned to the C−O stretching 

vibration [24,32]. The band at 1299 cm–1 corre-

sponded to the deformation vibration of O−H. 

The characteristic peaks at 1606 cm−1 and 1492 

cm−1 are associated with the vibration of C=C 

bonds [30,32]. The absorption peak at 1710 

cm−1 indicated the presence of C=O stretching 

vibration on the surface of the material. The 

peak that appeared at 2921 cm–1 could be as-

cribed to the stretching vibration of aliphatic 

C−H bonds. The characteristic broadband near 

3415 cm−1 was attributed to the stretching vi-

bration of O−H originating from the residual 

water or acid, indicating the presence of crys-

talline water on the sample surface, which was 

caused by moisture absorption after drying.  

Further, the graphite-like structure of 

HTCP-2 was revealed by Raman spectroscopy 

[21]. There were two distinct absorption peaks 

in the Raman spectrum due to defect structure 

and graphitization structures (Figure 2(b)). 

The G band at 1576 cm−1 was related to the in-

plane vibration of the sp2 bonded crystallite 

carbon, while another peak at 1362 cm−1 of the 

D band is attributed to defect sites or disor-
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Figure 2. (a) FTIR spectra of HTCP, HTCR, HTCZ, and HTCK, (b) Raman spectroscopy of HTCP-2. 
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dered carbon formation. The experimental re-

sults suggested that the surface of hydrother-

mally carbonized microspheres typically con-

tains abundant functional groups, and the type 

and concentration of sugars used as synthetic 

raw materials do not impact the composition of 

the hydrothermal carbon. 

 

3.2 Morphologies and Synthesis Mechanism 

The morphology of HTC synthesized without 

dispersant was shown in Figure 3. HTC con-

sists of microspheres with diameters ranging 

from 4.5 to 6.5 m, as well as different num-

bers of oxygen-rich nanoclusters can be ob-

served [27]. Figure 3(a), (b), and (c) showed the 

morphology of HTCP-1, HTCP-2, and HTCP-3 

synthesized at concentrations of 0.1 M, 0.2 M, 

and 0.3 M, respectively, using glucose as a car-

bon source. Both HTCP-1 and HTCP-2 exhibit-

ed good dispersion. As the reactant concentra-

tion increases, the degree of aggregation and 

carbonization of the synthesized hydrothermal 

carbon decreases. The carbon microspheres of 

Figure 3. FESEM images of (a) HTCP-1, (b) HTCP-2, (c) HTCP-3, (d) HTCR, (e) HTCZ, and (f) HTCK. 
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HTCP-2 had the smallest size, while HTCP-3 

consisted of gourd-shaped microspheres and 

monodisperse microspheres. 

Figure 3(d), (e), and (f) showed the micro-

scopic morphology of HTCR, HTCZ and HTCK 

prepared with lactose, sucrose and chitosan as 

carbon sources, respectively, a decrease in the 

number of monodisperse carbon spheres can be 

observed. Figure 3(d) presented rosette-like 

carbon spheres, a pea pod-like morphology ap-

peared in Figure 3(e), and Figure 3(f) showed 

the lowest number of dispersed monodispersed 

spheres and a large number of carbon 

nanoclusters. The morphology of the hydrother-

mal carbon spheres indicated that reducing the 

concentration of raw materials and using mon-

osaccharides and disaccharides with low 

polymerization were more beneficial to obtain 

biochar spheres with uniform size and well-

dispersion, resulting in materials with excel-

lent performance. 

Based on the analysis of the composition, 

structure, and morphology of hydrothermal car-

bon, a synthesis mechanism was proposed. Glu-

cose is an important polyhydroxy aldehyde 

monosaccharide with a pyranose structure in 

nature. The synthesis of hydrothermal carbon 

using glucose can be carried out at relatively 

low reaction temperatures. Through intermo-

lecular dehydration at 160 °C, glucose can un-

dergo polymerization and carbonization at a re-

action temperature of 170 °C to form carbon 

microspheres [11–13].  

In the hydrothermal carbonization process 

of polysaccharides and disaccharides, hydroly-

sis of the sugars occurs first to generate glucose 

and fructose, and the resulting monosaccha-

r i d e s  a r e  c o n v e r t e d  i n t o  5 -

hydroxymethylfurfural (HMF) through direct 

dehydration. Subsequently, HMF undergoes 

polymerization, condensation, and aromatiza-

tion reactions to transform into hydrothermal 

carbon [12,14,28]. The hydrolysis reaction of 

polysaccharides consumes energy, thereby in-

creasing the energy consumption of the reac-

tion. The high surface energy of the reaction 

intermediates leads to the generation of oxy-

gen-rich nanoclusters [27]. The synthesis 

mechanism of hydrothermal carbon is illustrat-

ed in Figure 4. 

 

3.3 Adsorption Performance of Cr(VI) by HTC 

3.3.1 N2 adsorption‐desorption isotherm 

The surface structure and pore structures of 

HTCP-2, HTCR, and HTCZ were evaluated us-

ing the Brunauer‐Emmett‐Teller (BET) meth-

od (Figure 5) at 77 K and under the N2 atmos-

phere. The N2 adsorption-desorption isotherms 

of HTC exhibited a hysteresis loop in the range 

of relative pressures of 0.2–1.0. HTCP-2 exhib-

ited a type IV-H3 adsorption-desorption iso-

therm (Figure 5(a)), and HTCZ and HTCR 

were classified as type IV-H4. The specific sur-

face area of HTC was obtained using the Multi-

Point BET method, and the pore volume and 

pore size distribution of each sample were also 

obtained. The BET-specific surface areas of 

HTCP-2, HTCR, and HTCZ were 64.31, 

15.4923, and 2.04 m2.g−1, respectively, indicat-

ing that carbon microspheres possess mesopo-

rous structures. The pore size of the three 

products are showed in the insert map of Fig-

ure 5, the test reports provided adsorption pore 

sizes of 3.418, 3.835, and 3.836 nm for HTCP-2, 

HTCR, and HTCZ, respectively, indicating that 

all of the materials obtained were mesoporous. 

The adsorption pore volume of the carbon mi-

crospheres was calculated using the BJH meth-

od, and the adsorption pore volumes of HTCP-

2, HTCR, and HTCZ were found to be 0.310, 

0.007, and 0.004 cm3.g−1. HTCP-2 has a largest 

adsorption pore volume and specific surface ar-

ea, and therefore shows the best adsorption 

performance. 

 

Figure 4. Synthesis of hydrothermal carbon. 
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3.3.2 Adsorption kinetics 

The adsorption activity of HTCP-1, HTCP-2 

and HTCP-3 were evaluated using 30 mg.L−1 

Cr(VI) as a simulated pollutant. Figure 6(a) 

showed that the order of the instantaneous ad-

sorption capacity of Cr(VI) is HTCP-1> HTCP-

2> HTCP-3. The pseudo-first-order and pseudo-

second-order kinetic models were used to ana-

lyze the adsorption of Cr(VI) by HTCP, and the 

correlation coefficients (R2) of the fitted curves 

in Figure 6(b) and 6(c) showed that the R2 val-

ue obtained from the pseudo-second-order ki-

netic model (R2 > 0.998) was higher than that 

of the pseudo-first-order kinetic model (R2 < 

0.948). Therefore, adsorption of Cr(VI) by 

HTCP was more compatible with the pseudo-

second-order kinetic model, indicating a chemi-

cal adsorption process. According to the pseu-
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Figure 5. N2 adsorption-desorption isotherms 

and pore-size distribution plots of (a) HTCP-2, 

(b) HTCR, and (c) HTCZ. 
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Figure 6. HTCP was prepared with glucose as 

a carbon source, (a) instantaneous adsorption 

amount, (b) pseudo-first-order kinetic model, 

and (c) pseudo-second-order kinetic model. 
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do-second-order kinetic model, the adsorption 

capacities HTCP-1, HTCP-2, and HTCP-3 for 

Cr(VI) were 10.45, 8.46, and 6.05 g.mg−1,        

respectively, and the adsorption rates were 

0.00968, 0.00886, and 0.00399 g.mg−1.min−1,  

respectively. 

 

3.3.3 Adsorption isotherms of Cr(VI) on HTCP-

2 

As shown in Figure 7(a), the adsorption ca-

pacity of HTCP-2 for Cr(VI) increases with in-

creasing Cr(VI) concentration. When the con-

centration of Cr(VI) is 80 mg.L−1, the adsorp-

tion capacity of HTCP-2 for Cr(VI) is 22.62 

mg.g−1. However, when the concentration ex-

ceeds 80 mg.L−1, the adsorption capacity gradu-

ally decreases with the increase in pollutant 

concentration, indicating that the adsorption of 

Cr(VI) by HTCP-2 is a chemical adsorption pro-

cess, which is consistent with the results of ki-

netic fitting. In order to investigate the adsorp-

tion mechanism of HTCP-2 for Cr(VI), the 

Langmuir monolayer and Freundlich multi-

layer adsorption isotherm models (Equations 

(3) and (4)) were used to process the experi-

mental data. The obtained adsorption iso-

therms are shown in Figure 7(b), compared to 

the Langmuir adsorption model, the Freun-

dlich adsorption model has a greater non-linear 

fitting correlation coefficient R2 (0.975 > 0.942). 

Therefore, the adsorption of Cr(VI) by HTCP-2 

followed Freundlich multilayer adsorption. The 

effect of different pH value on Cr(VI) adsorp-

tion by HTCP-2 is shown in Figure 7(c). The 

adsorption capacity of HTCP-2 for Cr(VI) was 

greater at lower pH value than at higher pH 

value, and the adsorption capacity was maxi-

mum at pH 3, which indicated that the adsorp-

tion capacity of HTCP-2 for Cr(VI) was highly 

dependent on pH. This is due to the fact that at 

pH was 3, Cr(VI) compounds was present in 

the species of HCrO4−, which has good electro-

static attraction, so the adsorption capacity of 

biochar on Cr(VI) is better under acidic condi-

tions. When pH >6, Cr(VI) compounds mainly 

existed as CrO42−, the competition between 

CrO42− and OH− was more obvious, and the ad-

sorption of Cr(VI) by biochar received inhibi-

tion [21]. 

 

3.3.4 Adsorption performance of hydrothermal 

carbon synthesized from disaccharides and pol-

ysaccharides for Cr(VI)  

The adsorption performances of HTCP-2, 

HTCR, HTCZ, and HTCK for 30 mg.L−1 Cr(VI) 

were evaluated. Adsorption kinetics for Cr(VI) 

by the prepared hydrochars were shown in Fig-

ure 8(a), following the order HTCP-2 > HTCR > 

HTCZ > HTCK. Figure 8(b) and 8(c) demon-

strated those the R2 values of the pseudo-

second-order kinetics of hydrothermal carbons 
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Figure 7. (a) Adsorption capacity of HTCP-2 for Cr(VI) (pH = 6), (b) adsorption isotherms of Cr(VI) on 

HTCP-2, (c) adsorption capacity of HTCP-2 for Cr(VI) under different solution pH (2~8). 
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for adsorbing Cr(VI) are higher than that of the 

pseudo-first-order kinetics, so the adsorption of 

Cr(VI) by the carbon microspheres synthesized 

from different sugars follows pseudo-second-

order kinetics. The pseudo-second-order appar-

ent kinetic rate constants of HTCP-2, HTCR, 

HTCZ, and HTCK for Cr(VI) adsorption, were 

determined to be 0.00886, 0.00766, 0.00580, 

and 0.00753 g.mg−1.min−1, respectively, with 

HTCP-2 exhibiting the highest adsorption rate. 

The characterization results of the composite 

materials indicate that the dispersion of the 

carbon microspheres has a significant positive 

influence on the adsorption effectiveness. More-

over, the adsorption capacities of HTCP-2, 

HTCR, HTCZ, and HTCK for 30 mg.L−1 Cr(VI) 

were further obtained (Figure 8(d)), which were 

8.46, 7.83, 6.26, and 7.24 mg.g−1, respectively. 

Combined with the experimental results of N2 

adsorption-desorption tests, the adsorption re-

moval capacity of the synthesized products for 

Cr(VI) was in the same order as the size of 

their specific surface area and pore volume. 

Among them, HTCP-2 has the largest specific 

surface area (64.31 m2.g−1) and adsorption pore 

volume (0.310 cm3.g−1). Among them, HTCP-2 

has the largest specific surface area and pore 

volume, which has the optimal adsorption per-

formance. 

 

3.4 Adsorption Performance of MB and RhB 

Dye by HTCP-2 

Figure 9(a) presents the performance of 

HTCP-2 in adsorbing 10 mg.L−1 MB, RhB and 

Cr(VI), respectively, results of the adsorption 

experiments showed that the adsorption activi-

ty of HTCP-2 for pollutants followed the order 

MB > RhB > Cr(VI). The analysis of the kinetic 

models in Figure 9(b) and Figure 9(c) also indi-

cated that the adsorption of dyes by HTCP-2 

followed pseudo-second-order kinetics. Com-

bined with the experimental results of infrared 
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Figure 8. Adsorption characteristics of 30 mg.L−1 Cr(VI) by HTCP-2, HTCR, HTCZ, and HTCK, (a) in-

stantaneous adsorption amount, (b) pseudo-first-order kinetic model, (c) pseudo-second-order kinetic 

model, (d) equilibrium adsorption capacity. 
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and Raman spectroscopy, it is observed that 

the presence of abundant anionic functional 

groups such as O−H, C−O, and C=O on the sur-

face of carbon microspheres, enhanced the elec-

trostatic adsorption process for cationic dyes 

such as methylene blue and rhodamine. This 

explains the enhanced adsorption performance 

of the carbon microspheres for cationic dyes. 

3.5 Optoelectronic Performance Analysis of 

HTCP-2 

The photoluminescence (PL) performance of 

a material is the spontaneous emission of light 

under appropriate light excitation, which has 

applications in many fields such as bioimaging, 

LEDs, or catalysis [12].The fluorescence spec-

trum of HTCP-2 is shown in Figure 10(a), ex-
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Figure 10. (a) PL spectrum, (b) transient photo-

current response, (c) Nyquist spectrum of 

HTCP-2. 
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Figure 9. Adsorption characteristics of 10 

mg.L−1 Cr(VI), MB, and RhB by HTCP-2, (a) 

instantaneous adsorption amount, (b) pseudo-

first-order kinetic model, (c) pseudo-second-

order kinetic model. 
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hibiting a strong green excitation peak at 503 

nm [12]. This phenomenon may be attributed 

to the generation of carbon quantum dots dur-

ing the hydrothermal carbonization process, 

which adhere to the surface of carbon micro-

spheres. The amorphous HTC material pre-

pared by the hydrothermal method has a sp2 

trons are excited by absorbing visible light pho-

tons, enabling HTC to have a broad spectral re-

sponse capability. 

The photocurrent and impedance tests in 

Figure 10(b) and 10(c) demonstrated that un-

der visible light illumination, HTCP-2 gener-

ates photocurrent signals with photo-excited 

carrier generation and separation properties. 

However, due to sp2 hybridization unit of HTC 

is in a discrete state, resulting in poor photo-

generated charge transfer and conductivity per-

formance. Therefore, HTC itself is not a well-

performing and stable photocatalyst. It is 

shown that constructing heterojunctions by 

loading HTC with wide bandgap semiconduc-

tors can significantly enhance the light absorp-

tion range [37], effectively utilize the photogen-

erated carriers, and simultaneously leverage 

the synergistic effect of adsorption and photoca-

talysis. 

 

4. Conclusion 

Based on the perspective of efficient utiliza-

tion of biomass and sustainable development, 

the composition, structure, and adsorption 

properties of hydrothermal carbons prepared 

from low-concentration, low-degree polymeriza-

tion sugars without the use of dispersants were 

investigated. The experiments showed that 

amorphous carbon microspheres were obtained 

through hydrothermal carbonization at 180 °C. 

Increasing the glucose concentration and mo-

lecular weight of the sugar resulted in larger 

particle sizes of the carbon microspheres, de-

creased dispersibility, and an increased num-

ber of oxygen-rich nanoclusters. The surface of 

HTCP-2 was enriched in anionic oxygen-

containing functional groups and exhibits good 

adsorption capacity for cationic dyes such as 

MB and RhB, and the adsorption process fol-

lowed second-order Freundlich chemical ad-

sorption. The synthesized HTCP demonstrated 

good photoelectric response capability and 

could be used for the preparation of adsorption-

photocatalysts, providing significant potential 

for the synergistic treatment of pollutants 

through adsorption-photocatalysis. 
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