
 

 

1. Introduction 
Electrodialysis (ED) is an electrochemical sepa-

ration process in which charged membranes are 
applied to separate ionic species from a mixed 
aqueous solution of varied components under an 
electrical potential difference It has been widely 
applied not only in the desalination of natural wa-
ter, desalination of saline solutions and production 
of table salt, but also in separation of organic acids 
and their salts in bio-separation processes. The 
performance of ionic transport which moves 
through the electro-membrane depend essentially 
on two factors: physicochemical properties of the 
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Abstract 
Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is dis-
cussed. Three scales of ion transport reviewed are: 1) ion transport in the membrane, where two approaches 
are used, the irreversible thermodynamics and modeling of the membrane material; 2) ion transport in a 
three-layer system composed of a membrane with two adjoining diffusion layers; and 3) coupling with hy-
draulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convective-
diffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily 
coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding so-
lutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it 
is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 CREC 
UNDIP. All rights reserved. 
. 
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membranes used; hydrodynamic conditions and 
coupling between the matter transfer in and out 
the membrane [1].   

The mathematical model of ion transport is im-
portant in ED process, since it can detail out entire 
picture of the electrotransport in ED cell. As a re-
sult, the mechanism of the ion transport can be 
described and the performance of the ED can be 
predicted. The mathematical model the ionic and 
water transport in ED can be divided into a few 
types of geometric scales. They are: (1) the mem-
brane; (2) a three-layer system being the mem-
brane with two adjoining diffusion layers; and (3) 
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coupling of hydraulic flow in an ED of two-
dimensional (2D) and three-dimensional (3D) ex-
hibited in cell. These three scales will be dis-
cussed thoroughly in the following section.  

 
2. Transport in Membrane 

Both of the transport of solution in hydraulic 
system which circulates in the space between the 
membranes and the ion transport in the mem-
branes are noteworthy in the ED process, but the 
latter predominately determines it performance. 
The irreversible thermodynamics approach is ef-
fective to describe the transport of ions and water 
through a membrane that treats the membrane 
as a "black box" and considers the cross effects of 
all flows through membrane completely. Another 
kind of model is mathematical modeling taking 
into account the geometric structure of the mem-
brane, hence, permitting establishment of rela-
tion between structure and physico-chemical local 
parameters with overall physicochemical proper-
ties of the membrane. 

 
 

2.1. Irreversible thermodynamic (IT) ap-
proach  

In IT theory, the material and energy flow is 
expressed by the Gibbs equation which has been 
applied to reversible processes. Because of this 
assumption, the IT is estimated to realize in the 
circumstance being close to reversible states. 
However the theory is considered to be applicable 
to some extent in the circumstances being apart 
from reversible state. In the IT, membrane phe-
nomena are treated by combining driving forces 
with resultant permeation fluxes across a mem-
brane using the phenomenological equation intro-
duced from dissipation function. The IT repre-
sents the simplest mathematical tool for linking 
the flux of species through the membrane with 
the interfacial concentrations of this species at 
the left- and right-hand sides, as well as with the 
external driving forces, the electric current in the 
case of the ED [2] 

The Nerst-Planck (NP) equations, used exten-
sively in this century, provides a simplified ap-
proach to mathematical developments, which re-
sults in expressions that are easy to use in design 
of electromembrane, which can be considered as a 
reduced form of IT equation. The NP equation 
contains two terms that reflect the contribution of 
diffusion and electro-migration in the ionic trans-
port. The NP equation may be relatively easily 
coupled with other equations describing hydrody-
namic conditions and ion transport in the sur-
rounding solutions, chemical reactions in the so-

lutions and the membrane, boundary and other 
conditions [3]. Nernst-Einstein (NE) relation can 
be applied simultaneously. NE relates the molar 
conductivity of each ion with its diffusion coeffi-
cient, which only one coefficient (normally the 
diffusion coefficient) per ionic species is neces-
sary, while the diffusion coefficient is expressed 
by ion mobility [4]. If the convective transport is 
appended, The NP extended will be formed which 
includes the velocity of solution. However there 
are several restrictions which reduce the applica-
tions of this equation and, in particular, do not 
allow this equation to act the role of theoretic ba-
sis for the ion [5] . 

In the same framework of IT, Kedem -
Katchalsky’s (KK) equation was developed where 
the formal thermodynamic treatment of mem-
brane permeability regards the membrane as a 
geometric transition region between two homoge-
neous compartments. It was assumed that differ-
ences are the driving forces responsible for the 
corresponding flows through membrane. A set of 
phenomenological equations was derived to deter-
mine the rate all flows. The phenomenological 
equations were based on practical, straight, and 
cross coefficient. A series relation was developed 
for the coupling coefficient which allows a ready 
transition from one system of coefficients to an-
other [6].  

The Maxwell-Stefan (MS) equation in the 
framework of IT is implemented for multi compo-
nent diffusion requires one diffusity or friction 
coefficient for each pair of components in the mix-
ture as transport coefficients. The friction terms 
are proportional to the local amount (or mole frac-
tion) of the other component which are propor-
tional to the difference in velocity among species. 
The driving force of MS tends to move down the 
gradient of its potential. The potential can be di-
vided into separate terms for activity gradients, 
electrical gradients and other gradients [7]. 

KK and MS equations do not have restrictions 
like as NP and are convenient for membrane 
characterization. Nevertheless, they are quite 
complicated because of a sufficiently high number 
of transport coefficients depending on the concen-
tration used. 

 
 

2.2. Structure Kinetic Models  
In this approach the membrane structure is 

taken into account. It is known that there are 
many facts directly or indirectly proving that ion-
exchange materials, including so-called homoge-
neous membranes and gel ion-exchangers, are 
spatially non-uniform. The nonuniformity of ion-
exchange membranes has great influence on 
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many physical and chemical properties of ion-
exchange systems and their operational charac-
teristics.  

Three main classes of mathematical models 
may be distinguished, depending on the scale of 
inhomogenieties taken into account when ion and 
molecule transport in the membrane is being 
simulated. Classical theories consider a mem-
brane as one homogeneous phase: a solution of 
matrix polymer chains, fixed and mobile ions and 
water. Quantitative treatments are based on the 
equations of irreversible thermodynamics. The 
classical gel model is the simplest model that as-
sumes the membrane in homogenity structure. 
The equilibrium electroneutrality relation be-
tween number ions in solution and in membrane 
can be described by Donnan equation which is 
depended on exchange capacity and mean activ-
itiy coefficients of solution [8] A transport model, 
where the membrane phase being considered as 
one species, based on a modified NP equation, 
taking the tortuosity of the membrane structure 
into account, was proposed by Higa and Kira [9]. 
It was shown that the apparent ionic mobility de-
pends not only on the valence of the ion and the 
membrane potential, but also on the tortuosity. 
The self-diffusion coefficient in the membrane 
phase depends on the size of the solvated ions and 
follows the sequence of mobility observed in aque-
ous solution. Wesselingh et al. [10] implemented 
the MS to count the transport coefficient of ion 
inside a homogenous membrane from free solu-
tion diffusity using tortuosity correction. The tor-
tuosity related to void fraction using Marshall’s 
equation. This homogenus membrane approach is 
quite general. However, the phenomenological 
coefficients dependent on concentration are very 
difficult to predict a priori. 

The second class of models deals with a thin 
membrane structure on the submicroscopic scale.  
Selvey and Reiss [11] proposed model which mem-
brane is treated being a quasi-homogeneous me-
dium with non uniform fixed charge distribution. 
Species in transport is considered: with the help 
of continuum flux equations where the elec-
troneutrality is not assumed, so as to include 
nonlinear effects due to space charge in the quasi-
homogeneous medium. The NP and Poisson equa-
tions are solved using perturbation theory, and 
the case of small fluctuations in fixed charge den-
sity is considered in order to obtain analytic solu-
tions to the perturbation equations. Hsu and. 
Gierke [12] proposed model class treats the mem-
brane being a cluster-channel network. Ion trans-
port and current selectivity are best described by 
percolation and absolute reaction rate theories, 
respectively. This submicroscopic approach allows 

the explanation of phenomena of ionic membrane 
permselectivity. However, since is not taking into 
account heterophase structure, the model may 
lead to inaccuracies. 

The third class of models studies membrane 
inhomogeneity on the microphase scale. A mem-
brane is considered as a system of two or several 
phases, and conductivity properties are found as a 
function of corresponding phase properties. 
Zabolotsky and Nikenko [13] proposed a micro-
heteogenous model presenting the membrane as a 
system consisted at least of two phases, as a “gel” 
phase being an uniformly grainy phases of fixed 
and mobile ions with the polymer matrix in-
cluded, and an electroneutral solution phase fill-
ing the “intergel” spaces. Inter-gel spaces are in-
ner parts of pores, channels and cavities. The gel 
phase is considered to be quasi-homogeneous. It is 
supposed that the NP equations are valid for each 
phase and for the membrane as a whole, the effec-
tive conductance coefficient for the membrane 
being a function of the respective quantities for 
each phase.   Tugas et al. [14] proposed a three-
phase membrane model that incorporates co-ion 
leakage, comprising hydrophobic polymer, active 
ion exchange zone and interstitial sorbed zone. 
The apparent coefficient is accounted using 
Nernst-Einstein relation. By applying this micro-
scopic membrane approach, the detail coefficient 
transport in heterogenous phase can be depicted. 

All the kinetic structure models proposed are 
implemented in the small range of low electrolyte 
concentration. The advantage of this approach is 
the detail coefficient transport inside the struc-
ture membrane can be observed. However, this 
approach generates quite complicated task of 
modeling and measurement local structure coeffi-
cients to validate the model. 

 
 

3. Three Layer Model  
 
The three layer model taking into account 

boundary diffusion layers adjoining the mem-
brane which useful for describing the role of the 
concentration polarization in the membrane 
transport. A variation in the interfacial concen-
trations obtained leads to a variation in the flux 
or in the effective transport number which is the 
charge transported by ion. This type of model per-
mits to consider coupling of the membrane trans-
port with different effects of the concentration 
polarization: limiting current density, water dis-
sociation, homogenous chemical reaction and a 
space charge macroscopic region [15].  

Tanaka [5] developed model which considers 
the limiting current density effect. The membrane 
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assumed is homogenous. By applying the limiting 
current density and extended NP equations, solu-
tion velocity in the boundary layer, thickness of 
the boundary layer, concentration distribution in 
the boundary layer, ionic flux in the boundary 
layer, electrical current density in the boundary 
layer and potential gradient in the boundary 
layer can be determined.  

Zabolotsky et al. [16] proposed mathematical 
model which consider the deviation from the local 
electroneutrality in space charge region near the 
depleted solution/membrane interface. The com-
petitive electro-transport of two counter-ions 
through an ion exchange membrane is described 
by the NP and Poisson equations. It is shown that 
the space charge region grows with the voltage 
applied. 

Nikonenko et al. [17] proposed model taking 
into account coupled homogenous chemical reac-
tions in the external diffusion boundary layers 
and internal pore solution. A mechanism of com-
petitive transport of anion single electron and 
anion double electron of weak electrolytes 
through anion-exchange membranes is described 
on the basis of the NP and Donnan equations. 
The model supposes local electroneutrality as well 
as chemical and thermodynamic equilibrium. It is 
exhibited that the pH of the depleting solution 
decreases and that of the concentrating solution 
increases during ED process. 

Tanaka [18] proposed a model considering wa-
ter dissociation phenomena in ED process. Water 
dissociation reactions have been analyzed by NP 
and pH equations. This phenomena base on the 
equilibrium reached between H2O, H+ ions and 
OH− ions consist of a forward reaction and a re-
verse reaction. The forward reaction rate in-
creases along with the increase of electrical poten-
tial difference in the water dissociation layer. By 
applying this model proposed, the forward reac-
tion rate constant of the water dissociation reac-
tion, thickness of the water dissociation layer; 
and concentration distribution of H+ and OH− 
ions and electrical potential gradient in the water 
dissociation layer is exerted. 

This approach is still works on homogenous 
membrane assumption. The complicated task of 
model will obtained, if the heterogenous structure 
of membrane is coupled. 

 
 

4. Coupling hydraulic in electrodialysis us-
ing  2D and 3D convective-diffusion model  

 
In this model the transport by convection and 

diffusion in two and three dimensions is consid-
ered in the solution circulated between the mem-
branes in dilute DC and concentration compart-
ments CC. The convective-diffusion model per-
mits to calculate current-voltage curves for an ED 
cell pair, the distribution of the concentrations 
and potential in DC and CC, and the longitudinal 
distribution of the current density and the distri-
bution of velocity and pressure in all compart-
ments.  

Shaposhnik et al. [19] proposed 2D model 
where the solution flow condition assumed is plug 
flow and laminar. Kinetic in membrane structure 
is neglected. Velocity profiles obtained, in accor-
dance with the solution of Navier-Stokes equa-
tions, have the form of Poiseuille distribution. 
The analytical solution obtained allows one to 
calculate concentration fields before, and after the 
overlapping of diffusion boundary layers 

Tanaka [20] proposed 2D model which was 
demonstrated to consider the nonuniformity solu-
tion velocity and the current density due to the 
pressure distribution in ED stack. The KK equa-
tion is implemented for accounting the ion trans-
port through homogenous membrane. Using the 
Fanning equation, static head difference are ex-
pressed by the function of friction head. Friction 
factor relates to the Reynolds number. The 
changes of the static head, the velocity head and 
the friction head in an entrance duct and an exit 
duct are given using the Bernoulli theorem. By 
implementing this model the solution friction fac-
tor, distribution coefficient of solution velocity 
and current density may be obtained. 

Heranz et al. [21] proposed 2D model where 
the flow condition is pulsated. The model presents 
the effect of pulsation frequency, pulsation ampli-
tude and fluid velocity on the wall shear stress of 
the inner cylinder of an annular duct composed by 
an anionic membrane in laminar flow. The mass 
transfer across the anionic membrane is calcu-
lated numerically for different pulsation parame-
ters (frequency, amplitude and fluid velocity), 
solving the mass balance equation.  As a conse-
quence of the pulsation, the shape and thickness 
of the concentration boundary layer change with 
time, and vortices are developed through a pulsa-
tion period due to the instability of the concentra-
tion boundary layer caused by the pulsating flow. 
The mass transfer enhancement across an ion 
exchange membrane in pulsating flow may be due 
to the periodic renewal of the liquid in the wall 
boundary layer as can be concluded by the forma-
tion of the vortices and their dispersion in the 
bulk of the solution. 
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Tanaka [22] developed 3D convective-diffusion 
model which is obtained due to coupling with 
natural convection phenomena. Mass transport 
with natural convection in a boundary layer near 
the surface of a vertical membrane is a three-
dimensional process. The ionic flux in a boundary 
layer is divided into the fluxes of diffusion, migra-
tion and convection. The solution velocity in a 
boundary layer is divided into the velocities of 
electro-osmosis, concentration-osmosis and natu-
ral convection. They are consistent with the equa-
tion of continuity. The 3D convective-diffusion 
model permits to determine velocity convection on 

three components direction. The convective-
diffusion model is the coupling hydrodynamic sys-
tem with membrane and three layer models. 
Thereby, the whole system of ED can be repre-
sented.  The summary of the model discussed are 
summarized in Table 1.  

 
 

5. Conclusion 

The three main scale: the membrane; a 
three-layer system being the membrane with two 
adjoining diffusion layers; and coupling of 
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TABLE 1. Summary – models applied in ED process. 

N
o 

Model Model class Geometrical 
scale 

Reference 

1 Nernst – Planck (NP) Irreversible thermodynamic Membrane Buck, R.P, 1984 
2 Nernst – Enstein (NE) Irreversible thermodynamic Membrane Pourcelly, et al., 1996 
3 Nernst – Planck ex-

tended 
Irreversible thermodynamic Membrane Tanaka, 2003 

4 Kedem – Katchalsky 
(KK) 

Irreversible thermodynamic Membrane Kedem and Katchal-
sky, 1963 

5 Maxwell -Stefan  (MS) Irreversible thermodynamic Membrane Wesselingh, et.al., 
1995 

6 Donnan , membrane gel Homogenous structure Membrane Lakshminara-
yanaiah, 1969 

7 NP, membrane tortuos-
ity 

Homogenous structure Membrane Higa and Kira, 1994 

8 MS , membrane tortuos-
ity, Marshall void frac-
tion 

Homogenous structure Membrane Wesselingh, et al, 
1995 

9 NP-Poisson, quasi homo-
genous phase. 

Submicroscopic structure Membrane Selvey and Reiss, 
1985 

10 Percolation and absolute 
reaction rate theories, 
cluster channel network. 

Submicroscopic structure Membrane Hsu and. Gierke, 
1983 

11 NP, membrane two 
phases (gel – intergel) 

Microscopic structure Membrane Zabolotsky and Ni-
kenko, 1993 

12 NE, membrane three 
phases 

Microscopic structure Membrane Tugas, et al. 1993 

13 Extended NP Limiting current density at 
double layers 

Three layer Tanaka, 2003 

14 NP- Poisson Space charge deviation at 
double layers 

Three layer Zabolotsky et al, 2002 

15 NP- Donnan, chemical 
equilibrium 

Homogenous chemical reac-
tion at double layer 

Three layer Nikonenko et al, 2003 

16 NP- pH equation Water dissociation at double 
layers 

Three layer Tanaka, 2002 

17 Convective – diffusion, 
Navier - Stokes 

2D uniform flow Hydraulic 
coupled 

Shaposhnik et al, 
1997 

18 Convective – diffusion, 
Fanning and Bernoulli 
theorem 

2D nonuniform flow Hydraulic 
coupled 

Tanaka, 2004 

19 Convective – diffusion, 
pulsation factor 

2D pulsed flow Hydraulic 
coupled 

Heranz et al, 1999 

20 Convective – diffusion, 
continuity 

3D- natural convection cou-
pled 

Hydraulic 
coupled 

Tanaka, 2004 



 

hydraulic flow in an ED of two-dimensional (2D) 
and three-dimensional (3D) exhibited in cell have 
been  reviewed and their basic concepts  was 
discussed. It is found that most of the previous 
work implemented NP equations since relatively 
easily coupled with other equations describing 
hydrodynamic conditions and ion transport in the 
surrounding solutions, chemical reactions in the 
solutions and the membrane, boundary and other 
conditions. However, it is limited to point ionic 
transport in homogenous and uniformly - grainy 
phases of structure. From the review above, 
developing model which can depict a whole ED 
process considering the membrane structure, 
three layer and hydrodynamic condition in the 
larger range of concentration and flow velocity is 
still needed. 
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