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Abstract

The formation reaction of LiFePOs from decomposition of precursors LiOH, FeSO4.7H20 and
(NH4)2HPO4 with mole ratio of Li:Fe:P=1:1:1 was investigated. The experiment was carried out by
thermogravimetric differential thermal analysis (TG-DTA) method using nitrogen as atmosphere at a
constant heating rate to obtain kinetic constant parameters. Several heating rates were selected, viz.
5, 7, 10, 15, 17.5, 22.5 and 25 °C min-l. Activation energy, pre-exponential factor and reaction order
were taken using Kissinger method and obtained 56.086 kd/mol, 6.95X108 min-!, and 1.058, respective-
ly. Based on fitting result between reaction model and experiment were obtained that reaction obeyed
the three dimension diffusion model. © 2014 BCREC UNDIP. All rights reserved
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1. Introduction

Energy has a very significant role in modern
life today. Increasing energy demand, will also
increase the need for efficient energy storage
devices. One of the energy storage devices wide-
ly used in daily life is the battery. Currently,
lithium ion batteries are widely used as an en-
ergy source for portable electronic devices and
more promising than other batteries because it
has a high potential, high energy density and
good cycling stability. Chew et al. [1] compared
with other materials for lithium batteries cath-
ode, LiFePO4 was a promising material because
1t was not toxic, the availability and had a great
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energy density.

There were several methods to produce
LiFePO4 particles as a battery cathode like
flame spray pyrolysis [2], hydrothermal [3], car-
bothermal [4] and solid state reaction [5]. The
kinetic formation was important to be studied
because it was closely related to reaction mech-
anism.

Chang [6] analyzed the kinetic formation of
LiFePOy4 in solid state phase from Li(CH3COO)
and FePO4 as precursor. Non-isothermal ap-
proach was carried out using hot gases as heat-
ing medium in XRD device. The crystallinity of
precursor was used to analyze the conversion
rate. Reaction mechanism was not known in de-
tail. Furthermore, previous researches were
more dominant to investigate the operating con-
ditions effect to battery performance. Therefore,
the formation kinetic of LiFePO4 was not well
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known in detail.

TG-DTA was simple method to determine ki-
netic parameters like activation energy and pre-
exponential factor. There are two methods to
determine kinetic parameters using TG-DTA
that is isothermal and non-isothermal method.
Although isothermal methods are more efficient
but non-isothermal methods are more applica-
ble to be used for all kinetic determination [7].
Significant error in isothermal methods was of-
ten occurred when the reaction having proceed-
ed before the temperature achieved or stabilized
at the selected temperature. In non-isothermal
methods, this error may be hindered [6]. Sever-
al methods to derive the formation kinetic using
non-isothermal methods have been reported by
numerous authors. Zivkovic and Dobovisec [8]
proposed the method using single constant
heating rate based on a relation for the first or-
der reaction rate and Arrhenius’s equation. The
energy activation and pre-exponential factor
were determined by graphical method. Altorfer
[9] proposed new method to determine kinetic
parameters by solved the reaction rate equation
numerically. Experimental were carried out to
evaluate this method using CaCOs decomposi-
tion. Blecic et al. [6] solved numerically more
detailed with considering concentration effect, .
Many models have used to evaluate kinetic pa-
rameters of calcite and magnesite decomposi-
tion experimentally [10]. Kissinger [11] used
the several constant heating rates to determine
kinetic parameters like activation energy and
pre-exponential factor. Then, the reaction order
was obtained by solving the non-linear equa-
tion.

Several researches have applied the non-
isothermal methods to derive kinetic parame-
ters. Murugan et al. [12] used themogravimetric
analysis to determine combustion and pyrolysis
reaction of Forterton oil. Non-isothermal and
isothermal experiments have been carried out
using nitrogen and air atmosphere to determine
the pyrolysis and combustion reaction, respec-
tively. The result revealed that the reaction or-
der for non-isothermal and isothermal investi-
gations were from 0.8-1. This indicated that the
order reaction approach unity. Arrhenius model
showed suitable fit between experimental and
prediction data.

Beside the kinetic parameters as activation
energy and pre-exponential factor, the reactant
conversions have significant influence in reac-
tion rate equation. Many conversion effect mod-
els have been recognized by authors. These
models were listed in Table 1.

Yuan et al. [13] used the Kissinger method to

obtain glass crystallization kinetic of
CoasFesoTas5Bs15. The activation energy was af-
fected significantly by various conversions and
heating rates. The conversion effect was consid-
ered by using several models with Surinach
curve fitting procedure. The result revealed that
in low conversions, the reaction rate equation
began with Johnson-Mehl-Avrami model-like
kinetic and in high conversions, the reaction
rate equation began with Normal Grain Growth
model-like kinetic. Setiawan et al. [14] has stud-
ied the formation reaction kinetic of hydroxyap-
atite from inorganic precursor using TG-DTA.
Non-isothermal analysis was carried out using
Kissinger methods.

Here, the formation reaction kinetic of
LiFePOs wusing FeSO47H:0, LiOH and
(NH4)2HPO4 as precursor was studied by Kis-
singer method. The conversion effect in reaction
rate equation has been implemented with sever-
al models using Surinach curve fitting proce-
dure.

2. Materials and Methods

Experiments were performed using thermo-
gravimetric differential thermal analysis (TG-

Table 1. Theoretical Kinetic Model Equations
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DTA) apparatus (DTA-60/60H, Shimadzu) with
alumina as sample pan. The apparatus is
shown in Figure 1. The operating temperature
range was from room temperature to 1000 °C
with a heating rate of 5, 7, 10, 15, 17.5, 22.5
and 25 °C min-L.

Nitrogen was used as a purge gas with con-
stant flow rate at 50 ml/min. LiOH (98% by
weight, Merck KGaA, Germany), FeSO4.7H20
(99% by weight, Merck KGaA, Germany) and
(NHy)2:HPOs (99% by weight, Merck KGaA,
Germany) were used as precursors. Precursor
was made by mixing several grams of LiOH
powder, FeSO4.7H20 powder and (NH3)2HPO4
with mole ratio of Li:Fe:P=1:1:1. About 10 mg
of precursors was placed on a cleaned alumina
sample pan. Nitrogen then was flushed
through the TG-DTA tube furnace and the tem-
perature was ramped. After the final tempera-
ture was reached, still under nitrogen atmos-
phere, the TG-DTA furnace was cooled back to
room temperature. The weight loss, energy that
absorbed or released, temperature and time da-
tum were detected and saved for further analy-
sis.

3. Result and Discussion
3.1. TGDTA analysis of precursors

The TGDTA analysis has been carried out to
know the temperature influence at constant
heating rate for each precursor. Figure 2 is TG-
DTA graph of FeSO4.7H20 at 10 °C/min. This
graph showed that at the temperature of about
50 °C, FeS04.7H:20 began to decrease about 4
% by weight. At this temperature, water mole-
cules released according to following reaction:

FeS04.7H20 — FeS04.6H20 + H20 (1)
At a temperature of about 100 °C weight loss of
about 40 % was occurred. At this temperature,
the water molecules are still present in the sol-
id evaporates by the reaction:

Reference pan  Sample pan /‘\
= :
/" l\n
r‘ = o
] -
TG-DTA Flowmeter Nitrogen

Figure 1. Experimental set-up apparatus

DTA (V)

FeS04.6H20 — FeSO4 + 6H20 (2)
Both reactions were also accompanied by endo-
thermic peak. Furthermore, at a temperature
of about 550 °C, FeSO: decomposed and re-
leased SO2 and O2 molecule with a weight of
about 28 % based on the reaction:
2FeS04 — 2FeO + 2502 + O2 3)

From the TGDTA graph of LiOH (Figure 3)
at temperatures around 100 °C occurred the
heat absorption and decrease of weight about
14 %. Heat absorption was caused by the re-
lease of the H20 molecules reserved by LiOH.
Solid anhydrous LiOH can absorb H20 being
LiOH.H:0. At the temperature of about 400 °C
heat absorption occurred in the absence of
weight loss, that was the melting point of LiOH
approximately 425 °C. At a temperature of
about 475 °C occurred the heat absorption and
decrease of weight about 32 %. In these condi-
tions, the OH group attached to the LiOH mole-
cule decomposed to form H20 molecules by the
reaction:

2LiOH — Li20 + H20 (4)

Figure 4 reveals that the (NH4)2:HPO. de-
crease of weight began at 150 °C followed by
heat absorption. In this condition, (NH4)2HPO4
released step by step the NHs by the reaction:
(NH4)2:HPO4+ - NH4H2PO4 + NH3 5)
Furthermore, NHsH2POs released NHs and
H20 and formed a phosphate oxide based on
the reaction:
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Figure 2. TGDTA graph of FeS04.7H20
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2NH4H2PO4 — 4NHs3 + 3H20 + P20s (6)

with the final weight was 54 % of initial weight
at a temperature of about 550 °C. Decreased of
P205 weight up to 85 % due to P205 having a
low melting point (340 °C) and easily sublimed
at a temperature of 360 °C.

To analyze the reaction mechanism, about
10 mg mixture precursor consist of
FeS0O4.7H20, LiOH and (NH4):HPOs with
atomic ratio of Li:Fe:P were 1:1:1. Nitrogen gas
was used as flue gas to maintain the atmos-
pheric in inert condition. The heating rate was
fixed at 10 °C min-! from room temperature to
1000 °C.

Figure 5 shows the result of TGDTA analy-
sis. The graph showed that TGDTA of mixture
precursor was a combination of each precursor.
From the TGDTA analysis was concluded that
the mechanism of LiFePOs formation from
FeS04.7H20, LiOH and (NH4):HPO4 was start-
ing with the release of H20 molecules of
FeS04.7H20 (1) to form FeS04.6H20. Further-
more, FeS04.6H20 release H20 to form FeSO4
(2) gradually simultaneous with the release of
NHs from (NH4)2:HPO4 to form NH4H:2PO4 (3).
At 425 °C LiOH melted and coated FeSO4 and
NH4H:2PO4(4). At 550 °C Li20, P205 and FeO
was fuse to form LiFePO4 (5). From this mecha-
nism, can be conclude that the formation reac-
tion of LiFePOs from FeSOs, LiOH and
(NH4)2HPO4 was gradual manner. At heating
rate 10 °C/min, the decomposition reaction was
started at 119 °C.

General reaction rate for solid state was:

= = f()k(T)
(7)
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Figure 3. TGDTA graph of LiOH

where f(x) is a function of volume or mass frac-
tion of reacted precursor, k(T) is account of de-
pendence temperature which is calculated by
Arrhenius equation:

k(T =dexp (- Z) ©

The decomposition reaction temperature to
form a LiFePO4 was affected by heating rate.
Based on decomposition reaction that analysed
at several constant heating rate could be ob-
tained energy activation and constant reaction
order and further used to get the reaction equa-
tion. This method has been proposed by Kissin-
ger [11,15]. By the following Kissinger equation
[15], the kinetic parameter could be calculated:

¢ _ _ E AR
lnrm“ = er—l-ln -

C)

where ¢ was constant heating rate, T» was de-
composition temperature, E was activation en-
ergy, R was ideal gas constant (8134 J/kmol °C)
and A was pre-exponential factor. By plotting
In(¢/Tn?) and 1000/T, that shown in Figure 6,
obtained the activation energy and pre-
exponential factor were 56.086 kdJ/mol and
6.95x108 min-1, respectively.

The reaction order could be got by solving
the following non linier equation [11]:
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Figure 4. TGDTA graph of (NH4)2HPO4
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12)

(13)
and obtained n = 1.058.

f(x) was evaluated with agreement of experi-
ment to correlation in Table 1. Comparing the
plot of In(K(T).f(x)) versus —In(1-x) from exper-
imental data with the theoretical model func-
tions. The result was shown in Figure 7.

It can be seen that the 3 dimensional diffu-
sion model has a good agreement between ex-
periment and correlation. Therefore, the for-
mation reaction equation for LiFePO4 was:

dx e -1
—— =695 10%exp

56,0863 10%
dt ~

= ) [{1 —x) -3 _ 1]

s

(14)

104
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Figure 6. Graph of Kissinger equation

4. Conclusions

TGDTA method can be used to get the reac-
tion equation of formation LiFePO4 from LiOH,
FeS04.7H20 and (NH4)2HPOy4 as precursor. The
activation energy, pre-exponential factor and
reaction order were 56.086 kdJ/mol, 6.95x108
min-!and 1.058, respectively. The formation re-
action equation was good agreement with 3 di-
mensional diffusion model.
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