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Abstract 

Flavanones are one of the flavonoid group that has wide variety of applications such as a precursors in drug dis-

covery. In the laboratory, flavanone is often synthesized from chalcone compounds. The conversion of chalcone to 

flavanone can be catalyzed by bronsted acid. The reaction mechanism for this process is proposed through the Mi-

chael addition reaction, however, the energetic details and the rate determining step for this reaction is not cer-

tainly known. This research aimed to investigate the reaction mechanism for chalcone-flavanone conversion with 

the present of bronsted acid as catalyst and also studied the effect of the solvent on the reaction energy profile 

with computational method. In this study, the modeling of the reaction mechanism for the said reaction was car-

ried out using the DFT computational method with M06-2X functional. The computation was done both in the gas 

phase and in present of the solvent effect using the PCM models. The results showed that the mechanism of chal-

cone-flavanone conversion occurred in three steps which are protonation, cyclization, and then tautomerization. 

Based on these calculations, the rate determining step was the tautomerization reaction, which exhibited the same 

results with or without the solvent effects.   
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1. Introduction 

Flavonoids are secondary metabolites that 

are commonly found in plants. This group of 

compounds can be found in various plant tis-

sues, including leaves, woods and barks, roots, 

seeds, fruit, and flowers. The important roles of 

flavonoids in plants includes being a UV light 
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filter, involved in the nitrogen fixation process, 

and as a compound responsible for flower color-

ing [1]. Apart from that, flavonoids also have 

various biological properties, including as anti-

oxidant, anti-inflammatory, cancer prevention, 

reducing dementia risk, anti-asterclerosis, and 

diseases related to heart damage [2,3]. Thus, 

flavonoids are an important group of natural 

compounds that have studied by many research-

ers. Structurally, flavonoids have a carbon 

framework of C6-C3-C6. The basic structure of 

flavonoids include chalcone, flavanone, flavone, 
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flavonol, dihydroflavonol, auron, leukoantocya-

nidin, proanthocyanidin and anthocyanidin 

[4,5]. 

Flavanones are compounds in the flavonoid 

class known to have biological activities such as 

anti-cancer, anti-tumor, anti-bacterial, anti-

microbial, antioxidant, esterogenic, and anti-

esterogenic. Flavanones are also known as pre-

cursor compounds for various other plant flavo-

noids, such as flavanols, dihydroflavanol, deox-

yanthocyanidins, and various polyphenols. 

Based on the physiological properties related to 

physical attractiveness of the plants and also 

their promising role in the health sector for hu-

mans, various efforts have been made both to 

isolate flavanone compounds from plants and to 

carry out synthesis in the laboratory. In the la-

boratory, the synthesis of flavanones from the 

chalcone precursor with the formation of un-

substituted flavanone from 2’-hydroxychalcone 

could be occured with the help of catalysts such 

as mineral, ion-exchange resins, and acetic    

acids [5–7]. 

The reaction mechanism for the conversion 

of chalcone to flavanones in the presence of an 

acid catalyst is supposed to follow through the 

Michael addition reaction mechanism [8,9], but 

there is no past report regarding the energetics 

of the reaction mechanism or its rate determin-

ing step. By understanding a reaction mecha-

nism, the reaction conditions could become eas-

ier to control and the resulting product could be 

optimized, both in yield and energy consump-

tion. On the other hand, the development of 

computational chemistry could offer insight in 

understanding the nature of organic molecules 

for their structures, properties, and reactions 

[10]. Quantum mechanical computational 

method is one of the method that can be used 

in determining the mechanism of chemical re-

actions. Quantum mechanical calculations, es-

pecially with the density functional theory 

(DFT), are now applicable to real chemical sys-

tems studied by experimental chemists [11]. 

Based on those advantages of computational 

method, this work aimed to investigate the re-

action mechanism of chalcone-flavanone con-

version in the present of Bronsted acid using 

DFT computational calculation with solvent ef-

fect study. 

 

2. Materials and Methods 

2.1 Computational Details 

Quantum chemical calculations in this 

study were performed by using Gaussian 09 

program package [12]. Softwares for molecular 

visualizations were carried out by software 

GaussView 5.0 [13], ChemCraft [14], and Jmol 

[15]. The geometry optimization for the reac-

tants, intermediates, products and transition 

states was fully calculated with DFT method. 

The Density functional theory is based on the 

two Hohenberg-Kohn theorems stated that the 

ground-state properties of an atom or molecule 

are determined by its electron density function 

[16]. M06-2X [17] functional was employed. 

The energy cut-off was 10−5 kJ.mol−1 and the fi-

nal RMS energy gradient was below 0.01 

kJ.mol−1.A−1 [18]. For all calculations, the       

6-311+(d,p) basis set was used as the command 

[19,20]. The calculation of the solvent effect 

was carried out by using a continuous polariza-

tion model (PCM) [21] then was compared with 

the reaction model in the gas phase.  

The results of the geometric optimization 

calculation for stable molecules had not showed 

any imaginary vibrations, while for the transi-

tion state had produced only one imaginary vi-

bration with a frequency greater than 100 

cm−1. Calculation of the Gibbs free energy of 

the reaction had been done by calculating the 

difference in energy relatively to the reactants. 

 

2.2 Proposed Reaction Mechanism 

The reaction mechanism, which was pro-

posed in this study, is referred to Michael's in-

tramolecular addition reaction mechanism [8] 

shown in Figure 1. 

 

3. Results and Discussion 

3.1. Optimization of geometry and calculation 

of transition state structures 

Optimization of the molecular structure of 

the reactant (chalcone), two intermediates (I-1 

Figure 1. The reaction mechanism for the conversion of chalcone into flavanones followed Michael addi-

tion with methane sulfonic acid as catalyst. 



 

Bulletin of Chemical Reaction Engineering & Catalysis, 16 (4), 2021, 798 

Copyright © 2021, ISSN 1978-2993 

and I-2), and the product molecules (flavanone) 

had successfully carried out. The calculation re-

sults were showed in the Figure 2, each visual-

ized molecules bellow had the lowest energy pa-

rameter. 

The first step in the conversion reaction of 

chalcone to flavanone with a bronsted acid cat-

alyst was the protonation of the carbonyl group 

by the H+ ions from the catalyst formed a posi-

tively charged intermediate I-1. The positive 

charge in I-1 was redistributed until the most 

stable state was obtained. The change in 

charge around the protonation center was pre-

sented in Table 1. As expected from organic 

chemistry concept, the protonated carbonyl 

group had caused the positive charge at C3 in-

creased. 

The next step, the closing ring on the chal-

cone structure was occurred due to an attack 

from the O17 atom to the positively C3 and 

formed an oxygen–carbon bond in the interme-

diate I-2. The structure of the transition state 

 

Atom 
Muliken Charge 

Before protonation After protonation 

O10 −0.234711 −0.084022 

C1 −0.832241 −0.656552 

C2 −0.583721 −0.845075 

C3 +0.427900 +0.535184 

Table 1. Charged atoms selected for the chalcone protonation stage. 

Figure 2. Visual stable structure of the reactants, intermediates, and calculated products. 
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(TS-1) of this step had successfully calculated 

and an imaginary vibration at the reaction cen-

ter was obtained. Figure 3 showed the calculat-

ed TS-1 structure.  

At tautomerization step, the hydroxyl func-

tional group had changed to become a carbonyl. 

The H30 atom, which was originally bound to 

the O10 atom, had shifted to the C2 atom form-

ing a new hydrogen–carbon bond between 

them. The removal of H30 atom had resulted 

the O10 atom to form a carbonyl structure. The 

structure of the transition state for the tautom-

erization step had calculated and shown in Fig-

ure 4. 

 

3.2 Reaction Gibbs Free Energy (Potential En-

ergy Surface / PES) 

The calculation of the reaction Gibbs free 

energy had done by subtracting the correction 

factor for the sum of electronic energies with 

thermal free energies. In the Table 2 showed 

the relative Gibbs free energy values for each 

species in the conversion of chalcone to fla-

vanone by comparing the reaction energy with 

and without solvent effect. While the profile of 

the reaction Gibbs free energy changes present-

ed in Figure 5. 

In the calculation results, both with or with-

out a solvent effect, the activation energy for 

the tautomerization (TS-2) had relatively great-

er energy than the cyclization (TS-1), and had 

concluded as the determining step for the reac-

tion rate. However, it was clear that the sol-

vent presence had affected the energy profile 

significantly, thus indicating the solvent had a 

big role in total reaction mechanism. So in or-

der to produce more accurate data, it was nec-

essary to add the solvent effect to the computa-

tional calculations. 

From the PES graph, it can be seen that po-

lar solvents, such as: ethanol and methanol, 

have a large stabilizing effect on the charged I-

2 and TS-1 species, but not many on the neu-

tral molecules. Meanwhile, non-polar solvents, 

such as toluene, provided less stabilization ef-

fect when compared to the gas phase. 

In 2017, Gasque and co-workers published 

an article in Journal of Molecular Structure in-

cluded computational calculations for the con-

version of chalcone to flavanones with an alka-

line catalyst and different type of reactant mol-

ecules [22]. From their calculation results, it 

was found that the rate determining step was 

the cyclization process, although the energy 

difference was relatively small. In contras, this 

study had used a Bronsted acid catalyst and 

the opposite results obtained, so that this 

study could provide a new picture in the con-

version mechanism of chalcones to produce re-

spective flavanones. 

 

Stable Species Gas Phase in Ethanol in Toluene in Methanol 

Reactants 0 0 0 0 

I-1 410.2898 53.00888 194.7545 49.57735 

TS-1 499.8562 136.4631 233.5935 132.9292 

I-2 −12.8282 −2.25793 −7.66121 −2.08465 

TS-2 223.9973 241.9216 232.4882 242.2314 

Product −63.0934 −50.3808 −57.3803 −50.1471 

Table 2. Relative Gibbs free energy of each step in the reaction mechanism of chalcone conversion to 

flavanones in kJ/mol. 

Figure 3. Visualization of the calculated TS-1 

structure. 

Figure 4. Visualization of the TS-2 structure 

calculated. 
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4. Conclusion 

The energy profile of the chalcone-flavanone 

conversion with the presence of an acid catalyst 

has been successfully determined by DFT com-

putational method. The reaction mechanism oc-

curred in three steps, which are protonation, 

cyclization, and tautomerization. Based on the 

activation energy, the tautomerization conclud-

ed as the rate determining step of the reaction. 

When including the solvent effect, the pattern 

of the potential energy obtained could partially 

change but the overall rate determining step 

showed the same results. Thus the polar sol-

vent give higher stabilization effect than non 

polar solvent for the charged molecules when it 

compared to the reaction in the gas phase. 
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Supplementary Data Part A. Optimized Geometry of Molecular Species Studied. 
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A1. Chalcone (M06-2X/6-311+G(d,p)) 

 

OH

OH

A2. Intermediate–1, carbocation (M06-
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A3. Intermediate–2, cyclic cation (M06-

2X/6-311+G(d,p)) 
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A4. Intermediate–3 (M06-2X/6-311+G(d,p)) 
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A5. Flavanone (M06-2X/6-311+G(d,p)) 

 

OH

O

A6. Chalcone in ethanol with PCM method 

(M06-2X/6-311+G(d,p)) 
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A7. Intermediate–1, cation in ethanol with 

PCM method (M06-2X/6-311+G(d,p)) 
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A8. Intermediate–2, cation in ethanol with 

PCM method (M06-2X/6-311+G(d,p)) 


