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Abstract 

Kinetic study of the reaction between p-Nitrophenyl benzoate (PNPB) by hydrazine (HYN) in the presence of 

Cetyltrimethylammonium bromide (CTAB)/Chloroform/Hexane reverse micellar medium shows that the reaction 

obeys first order kinetics with respect to each of the reactants. The rate of the reaction is much slower in reverse 

micellar medium compared to aqueous medium under identical conditions (kˈAq = 2.84×10−3 sec−1, krm =1.34×10−4 

sec−1). The rate constants for the reaction in the reverse micellar medium have been determined at different values 

of W {W=[H2O]/[CTAB]} and at different concentrations of CTAB. It was found that the observed rate constant de-

creases with W. This kinetic behaviour was interpreted by using modified Berezin pseudo phase model, taking into 

consideration the distribution of the reactants, PNPB and hydrazine between the three pseudo phases, i.e., water 

pool, interface an organic phase.  
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1.Introduction 

The surfactant aggregates formed spontane-

ously in organic solvents are called reverse mi-

celles and water is readily solubilized in the po-

lar core of reverse micelle forming a water pool, 

characterized  by  a  parameter W 

{W=[H2O]/[CTAB]} [1–3]. This solubilized water 

exhibits special properties like lower dielectric 

constant, higher ionic strength (in the case of re-

verse micelles made of ionic surfactants) and al-

tered nucleophilicity compared to bulk water [4–

8]. Since the water pool has different properties 
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compared to ordinary water, the rates of reac-

tions and mechanisms can be expected to be dif-

ferent.  

Reverse micelles are known to solubilise both 

polar and non-polar solutes [9–12] and because 

of these unique properties they are widely used 

as reaction media to design variety of reactions 

and synthesize novel materials [13–15]. This 

media is also very useful for the synthesis of na-

noparticles with desired shape and size [16–20]. 

Three reactions, kinetics of dissociation of 

[Fe(tptz)2]2+, oxidation of [Fe(phen)3]2+, indigo 

carmine and toluidine blue by periodate in the 

presence of CTAB reverse micelles have been 

earlier reported from this laboratory [21–23]. In 

the kinetics of dissociation of [Fe(tptz)2]2+, low 
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dielectric constant of the water pool facilitates 

the formation of ion pair between complex and 

Br− ion of CTAB and leads to increase in rate of 

reaction. In the study of kinetics of oxidation of 

[Fe(phen)3]2+ in CTAB reverse micelles, kinetic 

results have been quantitatively explained 

based on ionic strength of the water pool using 

Guggenheim equation. In the study of kinetics 

of oxidation of Indigo Carmine by periodate in 

CTAB reverse micelles, it was found that water 

molecule exists in the rate determining step of 

the reaction mechanism and the observed ki-

netic results have been quantitatively ex-

plained using Berezin pseudo phase model. In 

order to further explore the applications of re-

verse micelles and to develop kinetic models for 

a variety of reactions, an organic reaction (SN2 

reaction) between Paranitrophenyl benzoate 

and hydrazine in CTAB reverse micellar medi-

um, was chosen for study. The results of the ki-

netic study of this reaction along with the ki-

netic model are presented in this paper. 

 

2. Materials and Methods 

2.1 Materials 

Stock solutions of PNPB (99% pure, Merck, 

India) and hydrazine (99% pure, Merck, India) 

were prepared in double distilled water. Chlo-

roform and hexane were used after distillation. 

Stock solutions of CTAB (Cetyl tri methyl am-

monium bromide, 98% pure, Sigma, India) 

were prepared in 3:2 (v/v) chloroform-hexane 

mixtures. 

 

2.2 Preparation of Reverse Micellar Medium 

and Initiation of the Reaction 

An amount of 0.04 mL of hydrazine solution 

of concentration 2.5 mol.dm−3 was added into 

10 mL of 0.1 mol.dm−3 CTAB solution using a 

micro pipette. 0.02 mL of PNPB solution of con-

centration 0.02 mol.dm−3 was then added to in-

itiate the reaction. The reaction mixtures were 

shaken sufficiently to obtain a homogenous re-

verse micellar medium. The reaction was stud-

ied by changing the value of W in the range 

3.33 to 20.0 by varying the molar ratio of 

[Water] to [CTAB]. 

 

2.3 Experimental Method of Following the Re-

action 

The reaction was monitored by measuring 

the increase in absorbance of the product p-

Nitro phenol where it has maximum absorb-

ance at a wave length of 400 nm, using a SHI-

MADZU UV-1800 double beam spectrophotom-

eter. The reaction was carried out under pseu-

do first order conditions, [HYD] >> [PNPB] and 

the pseudo first order rate constants k' were 

obtained from plots of log(A∞−At) versus time. 

The second order rate constants, k2, were ob-

tained by dividing the pseudo first order rate 

constants, by the overall concentration of hy-

drazine. The kinetic data obtained are the av-

erages from triplicate runs with reproducibil-

ity less than ±4%. 

 

3. Results and Discussion 

The kinetic investigations of the reaction 

have been carried out under the conditions, 

{[HYD]>>[PNPB]}, and plots of log(A∞−At) ver-

sus time were found to be good straight lines 

showing first order dependence with respect to 

PNPB (Figure 1). The pseudo first order rate 

constant k', was found to be directly propor-

tional to concentration of hydrazine showing 

first order kinetics with respect to hydrazine 

(Figure 2).  The reaction has also been carried 

out in aqueous medium under identical condi-

Figure 1. Plots of log (AꝎ−At) versus time. Figure 2. Plots of k' versus [HYD]o. 
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tions and similar kinetic features were ob-

served. The reaction is much faster in the pres-

ence of aqueous medium (approximately twenty 

five times) compared to CTAB reverse micellar 

medium (Table 1). 

The slow rate of reaction in the presence of 

reverse micelles can be explained as follows: 

the reaction follows an SN2 mechanism and the 

transition state develops a partial negative 

charge compared to the reactants which are 

neutral (Scheme 1). Since high dielectric con-

stant conditions favours such a transition state, 

the reaction is much faster in aqueous medium 

compared to CTAB reverse micelles. 

 

3.1 Effect of W on Rate of Reaction 

Three different sets of experiments were 

conducted at three different concentrations of 

CTAB. At each fixed concentration of CTAB, a 

series of experiments were carried out at differ-

ent values of W (Table 2). It can be observed 

from the table that the pseudo first order rate 

constants k', decrease with increase in W. Hy-

drazine is highly hydrophilic species and there-

fore can exist in the aqueous water pool and in-

terface. Since PNPB is an organic compound, 

found to be distributed between the three pseu-

do phases. KHY and KPNPB represent distribution 

constants between the water pool and the in-

terface and QPNPB is the distribution constant 

between the water pool and the oil phase and 

are given by the equations; 

 

(1) 

 
Accordingly, the mechanism shown in Scheme 

2 is considered to explain the kinetic behaviour 

[25,26]. 

In the reaction Scheme 2, the overall con-

centrations of hydrazine and PNPB are related 

to the corresponding local concentrations in 

Scheme 1. Reaction mechanism 

µ 

(mol.dm−3) 

   k'aq.med×103 

(sec−1) 

k'(rev mic)×104 

(sec−1) 

3.46 2.84 1.34 

4.16 2.84 1.91 

Table 1. Comparison of rate constants in the 

aqueous medium and in the presence of reverse 

micelles (0.1 mol.dm−3 CTAB) at same ionic 

strength (µ), [HYD] = 2.0×10−2 mol.dm−3; 

[PNPB] = 5.0×10−5 mol.dm−3; T = 304±0.1 K. 
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each region by the mass balance Equations (2) 

and (3). 

(2) 

 

(3) 

where, 

(4) 

 

(5) 

 

(6) 

 

where, w, s and o represent the volume frac-

tions of the aqueous droplets, the interface and 

the oil phase, respectively. The overall second 

order rate constant, k2 is given by Equation (7). 

 

 

(7) 

 

 

 

Equation (7) can be simplified by assuming 

that the hydrophobic PNPB reside preferential-

ly in the oil phase compared to aqueous pools 

and that o is larger than either w and s. As a 

consequence, Equation (7) is reduced, after an 

appropriate rearrangement and by the use of 

Equation (4) to Equation (6). In this equation, 

the denominator involved the parameter W 

CTAB 

(mol.dm−3) 
[Br−]e W 

k'×104 

(sec−1) 

k2 ×102 

(= k'/[HYD]o) 

0.1 22.2 2.5 20.0 10.0 

  15.6 3.5 13.6 6.80 

  12.1 4.5 8.92 4.46 

  8.47 6.5 5.81 2.90 

  6.53 8.5 4.10 2.05 

  4.16 13.0 1.91 0.95 

  3.46 16.0 1.34 0.67 

  2.77 20.0 0.92 0.46 

0.2 22.2 2.5 19.2 9.6 

  15.6 3.5 13.4 6.7 

  12.1 4.5 8.80 4.4 

  8.47 6.5 5.43 2.71 

  6.53 8.5 3.80 1.9 

  4.16 13.0 1.78 0.89 

  3.46 16.0 1.28 0.64 

  2.77 20.0 0.86 0.43 

0.3 22.2 2.5 20.0 10.0 

  15.6 3.5 13.2 6.60 

  12.1 4.5 8.64 4.32 

  8.47 6.5 5.63 2.81 

  6.53 8.5 3.0 1.5 

  4.16 13.0 1.82 0.91 

  3.46 16.0 1.32 0.66 

  2.77 20.0 1.04 0.52 

Table 2. Effect of W and [CTAB] on observed first order rate constant (k'): [PNPB] = 5.0×10−5 mol.dm−3; 

[HYD] = 2.0×10−2 mol.dm−3; T = 302 K. 

 

Scheme 2. Distribution of reactants 
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which is important in determining the observed 

decreasing trend of k2 with increasing molar ra-

tio W. 

 

(8) 

 

The partition coefficient of hydrazine can be as-

sumed to be much less than 1 since there is no 

exchange between hydrazine with the counter 

ions Br- of CTAB.  Since the values of s lie in 

the range 0.89–0.95 the term KHYDs can be ne-

glected and Equation (8) now becomes, 

 

 

(9) 

 

 

 

(10) 

 

 

 

According to Equation (10), a plot of k2o 

versus 1/W should be linear. Such a plot was 

obtained and Figure 3 shows that the plots of 

k2o versus 1/W are good straight lines for 0.1 

mol dm−3 of CTAB and is true for all concentra-

tions of CTAB. At low values of W (3.33–4.44) 

small deviation from linearity was observed. 

This linear trend implies the absence of special 

properties of the water pool and their effect on 

the reaction rate. Since the properties exist at 

W ˂ 4, there is a deviation from linear trend at 

low W values. 

 

4. Conclusions 

The SN2 reaction of the PNPB by hydrazine 

obeys first order kinetics with respect to each of 

the reactants in aqueous as well as 

CTAB/Hexane/Chloroform reverse micellar me-

dium. The reaction has been found to be inhib-

ited around twenty times in the presence of 

CTAB reverse micelles compared to aqueous 

medium which can be attributed to low dielec-

tric constant of water pool. The second order 

rate constant decreases with W and is inde-

pendent of CTAB concentration. The kinetic re-

sults are interpreted by applying Berezin pseu-

do phase model and accordingly the plots of 

k2o versus 1/W are good straight lines for all 

concentrations of CTAB.   
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APPENDICES 

 

A. Expression for Rate and Rate Constant 
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B. Product of Reaction between Para Nitro Phenyl Benzoate and Hydrazine 

The product analysis was carried out by reacting 4.0×10−5 mol.dm−3 para nitrophenyl benzoate with 

equivalent amount of hydrazine in aqueous and CTAB reverse micellar medium.  After completion of 

the reaction, the yellow coloured product obtained was subjected to column chromatography to sepa-

rate the two products and then NMR and mass spectrum of the product was obtained (Figure S1 & Fig-

ure S2).  The spectra were found to be exactly identical with the spectra of para nitro phenol. 

Figure S1. Product chromatogram 

Figure S2. NMR mass spectrum of the product  


