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Abstract 

A new six coordinated tetra-nuclear macrocyclic Zn(II) complex, ZnL4(Phen)2 (1) (HL= 3-bromo-2-

hydroxybenzaldehyde-pyridine-2-carbohydrazone, Phen = 1,10-phenanthroline) has been synthesized by the self-

assembly of 3-bromo-2-hydroxybenzaldehyde-pyridine-2-carbohydrazone, Zn(CH3COO)2•2H2O, NaOH and 1,10-

phenanthroline in water/ethanol (v:v = 1:3) solution. Complex 1 was characterized by elemental analysis, infra red 

(IR), and single-crystal X-ray diffraction (XRD) analysis. The results show that Zn1 and Zn1b ions are six-

coordinated with a distorted octahedral geometric configuration by four O atoms of two different L ligands and two 

N atoms of two different L ligands, Zn1a and Zn1c ions are also six-coordinated with a distorted octahedral geo-

metric configuration by two N atoms of two different L ligands, two N atoms of Phen ligands and two O atoms of 

two different L ligands. Complex (1) forms 3D network structure by the -  interaction. The selective oxidation re-

actions of benzyl alcohols catalyzed by complex (1) was investigated. The highest benzyl alcohol conversion and 

benzaldehyde selectivity were obtained at 100 °C for 4 h under 5 bar of O2.  
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Research Article 

1. Introduction 

Macrocyclic metal complexes exhibit wide-

spread potential applications in cytotoxicity, an-

tioxidant and antibacterial activities [1–4], pho-

toluminescent property [5-7], catalytic proper-
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ties, such as: hydrosilylation of diphenyl acety-

lenes [8], electrocatalytic oxygen reduction 

[9,10], ring opening reaction [11], electrocatalyt-

ic CO2 reduction [12], hydrogen evolution reac-

tion [13], water oxidation catalysis [14], gas ad-

sorption [15], magnetic property [16], and so on. 

According to the literatures report [17–22], pre-

cious metal oxide, hydrogen peroxide, precious 

metal nanomaterials and MOFs are used as a 

catalyst to produce benzaldehyde by oxidation of 
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benzyl alcohol. However, there are few studies 

on catalytic oxidation of benzyl alcohol to ben-

zaldehyde by macrocyclic metal complexes. In 

our previous works, some macrocyclic metal 

complexes have been synthesized and their 

structures and properties have also been inves-

tigated [23–28]. In order to further investigate 

the structure and property of macrocyclic metal 

complexes, in this work, a new tetra-nuclear 

macrocyclic Zn(II) complex, ZnL4(Phen)2 (1) 

(HL = 3-bromo-2-hydroxybenzaldehyde-

pyridine-2-carbohydrazone, Phen = 1,10-

phenanthroline)  has been synthesized by the 

s e l f - a s s e m b l y  o f  3 - b r o m o - 2 -

h y d r o x y b e n z a l d e h y d e - p y r i d i n e - 2 -

carbohydrazone, Zn(CH3COO)2•2H2O, NaOH 

and 1,10-phenanthroline in water/ethanol (v:v 

= 1:3) solution. The structure of complex (1) 

was characterized by elemental analysis, IR 

and single-crystal X-ray diffraction analysis. 

The selective oxidation reactions of benzyl alco-

hols catalyzed by complex 1 was investigated. 

The highest benzyl alcohol conversion and ben-

zaldehyde selectivity were obtained at 100 °C 

for 4 h under 5 bar of O2. 

 

2. Materials and Method 

2.1 Materials and Measurements 

T h e  l i g a n d  o f  3 - b r o m o - 2 -

h y d r o x y b e n z a l d e h y d e - p y r i d i n e - 2 -

carbohydrazone was synthesized by our re-

search group itself and confirmed by element 

analysis and infrared spectroscopy. Other rea-

gents of NaOH (A. R.), 1,10-phenanthroline (A. 

R.), and Zn(CH3COO)2•2H2O  (A. R.) were pur-

chased from Sinopharm Chemical Reagent Co., 

Ltd.. Using an Elementar Vario III EL ele-

mental analyzer (Hanau, Germany) to analyze 

C, H and N. The crystal data of ZnL4(Phen)2 (1) 

were collected  on a Bruker Smart CCD diffrac-

tometer (Bruker, Billerica, MA, USA). The se-

Empirical formula C19H12BrN4O2Zn 

Formula weight 473.61 

Temperature/K 100.00(10) 

Crystal system Orthorhombic 

Space group Fddd 

a/Å 18.8920(5) 

b/Å 38.6707(10) 

c/Å 26.7016(6) 

α/° 90 

β/° 90 

γ/° 90 

Volume/Å3 19507.3(8) 

Z 32 

ρcalc, mg/mm3 1.290 

μ/mm‑1 3.462 

S 1.130 

F(000) 7520 

Index ranges -23 ≤ h ≤ 13, 

-47 ≤ k ≤ 35, 

-22 ≤ l ≤ 32 

Reflections collected 11111 

θ/° 3.253-73.313 

Independent reflections 4816 [R(int) = 0.0261] 

Data/restraints/parameters 4816/0/245 

Goodness-of-fit on F2 1.130 

Refinement method Full-matrix least-squares on F2 

Final R indexes [I>=2σ (I)] R1 = 0.0555, wR2 = 0.1247 

Final R indexes [all data] R1 = 0.0586, wR2 = 0.1266 

Largest diff. peak/hole / e Å-3 0.78/-0.51 

Table 1. Crystallographic data of tetra-nuclear macrocyclic Zn(II) complex (1). 

Copyright © 2021, ISSN 1978-2993 
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lective oxidation reactions of benzyl alcohols 

catalyzed by complex 3 was carried out in a 20 

mL stainless steel high pressure reactor. The 

conversion of benzyl alcohol and the selectivity 

of benzaldehyde were determined by gas chro-

matography spectrometer equipped with a SE-

54 column (GC-1100, Beijing Purkay General 

Instrument Co. Ltd). 

 

2.2 Synthesis of Tetra-nuclear Macrocyclic     

Zn(II) Complex 

3-Bromo-2-hydroxybenzaldehyde-pyridine-2-

carbohydrazone (0.5 mmol, 0.11601 g) and  

NaOH (0.5 mmol, 0.020 g) were dissolved into 

20 mL ethanol/H2O solution (v:v = 1:1) with 

stirring at room temperature. After 0.5 h, 

Zn(CH3COO)2•2H2O (0.5 mmol, 0.0865 g) was 

added to the above solution. After reaction at 

ca. 75 °C for 3 hours, 1,10-phenanthroline (0.5 

mmol, 0.0901 g) was added to the above solu-

tion. The reaction mixture was stirred for 4 h 

at ca. 75 °C. The white precipitate formed and  

filtered. Slowing volatilization of filtrate at 

room temperature, the crystals of tetra-nuclear 

macrocyclic Zn(II) complex (1) were obtained in 

30 days. Elemental analysis (%) calcd. for 

C19H12BrN4O2 Zn: C, 48.14; H, 2.53; N, 11.82. 

Found (%): C, 47.96; H, 2.76; N, 11.59. 

 

2.4 Crystal Structure Determination 

A suitable (0.12 mm × 0.11 mm × 0.09 mm) 

single crystal of tetra-nuclear macrocyclic 

Zn(II) complex (1) was selected to collect data 

on a Super Nova, Dual, Cu at zero, AtlasS2 dif-

fractometer. The crystal was kept at 100.00(10) 

K during data collection. SHELXL program 

[29] was used to solve the structure by direct 

method, and refined by the OLEX2 program 

[30]. The crystallographic data of tetra-nuclear 

macrocyclic Zn(II) complex (1)  are given in  

Table 1. 

 

2.5 The Procedure for The Oxidation of Benzyl 

Alcohol 

The selective oxidation reactions of benzyl 

alcohols catalyzed by tetra-nuclear macrocyclic 

Zn(II) complex (1) was carried out in a 20 mL 

stainless steel high pressure reactor. 0.050 g 

tetra-nuclear macrocyclic Zn(II) complex (1) 

catalyst, benzyl alcohol (1.0 mmol) and 1,4-

dioxane (7 mL) were added into the reactor, 

and then pure O2 was purged into the reactor. 

The suspension was stirred magnetically at 90 

°C or 100 °C for 4 h under 3–5 bar O2 pressure. 

The conversion of benzyl alcohol and the selec-

tivity of benzaldehyde were determined by gas 

chromatography spectrometer equipped with a 

SE-54 column. The products were identified by 

comparison with known authentic standards, 

and an external standard method was used for 

the qualitative analysis. 

 

3. Results and Discussion 

3.1. Structural Description of Tetra-nuclear 

Macrocyclic Zn(II) Complex  (1) 

The structural analysis of tetra-nuclear 

macrocyclic Zn(II) complex (1) shows that it 

crystallizes in the orthorhombic system with 

the Fddd (no. 70) space group. The molecular 

structure of tetra-nuclear macrocyclic Zn(II) 

complex (1) is shown in Figure 1. The selected 

bond lengths (Å) and angles (°) for tetra-

nuclear macrocyclic Zn(II) complex (1) are giv-

en in Table 2. As shown in Figure 1, the tetra-

nuclear macrocyclic Zn(II) complex (1) is made 

up of four Zn(II) ions, four 3-bromo-2-

Figure 1. The molecular structure of tetra-

nuclear macrocyclic Zn(II) complex (1). 

Figure 2. 3D network structure of tetra-nuclear 

macrocyclic Zn(II) complex (1).  
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h y d r o x y b e n z a l d e h y d e - p y r i d i n e - 2 -

carbohydrazone ligands and two 1,10-

phenanthroline ligands. In 1, four Zn(II) atoms 

adopt different coordination mode: Zn1 and 

Zn1b ions are six-coordinated with a distorted 

octahedral geometric configuration by four O 

atoms (Zn1: O1, O1a, O2, O2a; Zn1b: O1b, O1c, 

O2b, O2c) of two different L ligands and two N 

atoms (Zn1: N1, N1a; Zn1b: N1b, N1c) of two 

different L ligands, Zn1a and Zn1c ions are also 

six-coordinated with a distorted octahedral geo-

metric configuration by two N atoms (Zn1a: 

N3a, N3b; Zn1c: N3, N3c) of two different L  

ligands, two N atoms  (Zn1a: N4a, N4b; Zn1c: 

N4, N4c) of Phen ligands and two O atoms  

(Zn1a: O2a, O2b; Zn1c: O2, O2c) of two differ-

ent L ligands. Four Zn(II) atoms form  tetra-

nuclear macrocyclic structure by the bridge ef-

fect of four carbonyl oxygen atoms. The Zn-O 

and Zn-N distances are in the range of 

2.046(3)-2.259(2) Å (Zn-O), 2.052(3)-2.182(3) Å 

(Zn-N), respectively, which are comparable to 

other Zn(II) complexes [31-33]. The tetra-

nuclear macrocyclic Zn(II) complex (1) assem-

ble an extended 3D supramolecular network 

-

matic rings of ligands (Figure 2). 

 

Bond d Angle (°) 

Zn1-O1 2.046(3) O1-Zn1-O1a 100.83(17) 

Zn1-O1a 2.046(3) O1-Zn1-O2a 90.26(10) 

Zn1-O2 2.259(2) O2a-Zn1-O1a 159.04(11) 

Zn1-O2a 2.259(2) O1a-Zn1-O2 90.26(10) 

Zn1-N1 2.052(3) O1-Zn1-O2 159.04(11) 

Zn1-N1a 2.052(3) O1-Zn1-N1 87.57(12) 

C6-Br1 1.895(5) O1a-Zn1-N1 93.15(12) 

Zn1c-O2 2.090(2) O1-Zn1-N1a 93.15(12) 

Zn1c-O2c 2.090(2) O1a-Zn1-N1a 87.57(12) 

Zn1c-N3 2.143(3) O2-Zn1-O2a 85.16(13) 

Zn1c-N3c 2.143(3) N1a-Zn1-O2 105.14(11) 

Zn1c-N4 2.182(3) O2a-Zn1-N1a 73.99(11) 

Zn1c-N4c 2.182(3) N1-Zn1-O2a 105.14(11) 

C1-O1 1.293(5) N1-Zn1-O2 73.99(11) 

C8-O2 1.288(4) N1a-Zn1-N1 178.87(18) 

N1-N2 1.397(4) O2c-Zn2-O2 99.56(14) 

C7-N1 1.297(5) O2c-Zn2-N3 99.57(11) 

C8-N2 1.308(5) O2-Zn2-N3c 99.57(11) 

    O2-Zn2-N3 78.31(11) 

    O2c-Zn2-N3c 78.31(11) 

    O2c-Zn2-N4c 163.92(11) 

    O2-Zn2-N4c 93.09(11) 

    O2c-Zn2-N4 93.08(11) 

    O2-Zn2-N4 163.92(11) 

    N3c-Zn2-N3 176.77(17) 

    N3-Zn2-N4 89.88(12) 

    N3c-Zn2-N4 92.66(12) 

    N3-Zn2-N4c 92.66(12) 

    N3c-Zn2-N4c 89.88(12) 

Table 2. Selected bond lengths (Å) and bond angles (°) for tetra-nuclear macrocyclic Zn(II) complex (1). 

Symmetry transformations: a: 5/4-x, 5/4-y, +z; c: 5/4-x, +y, 5/4-z. 
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3.2 Activity of Benzyl Alcohol Oxidation 

After preparation and characterization of 

tetra-nuclear macrocyclic Zn(II) complex (1), its 

catalytic activity was investigated in the selec-

tive oxidation of benzyl alcohol with molecular 

oxygen as the sole oxidant. O2 is inexpensive 

and only produces water as its byproduct. The 

reaction temperature and pressure were opti-

mized in the selective oxidation of benzyl alco-

hol in the presence of tetra-nuclear macrocyclic 

Zn(II) complex (1). The results are summarized 

in Table 3. A blank experiment showed  a low 

benzyl alcohol conversion (9.6%) at 100 °C un-

der 5 bar of O2 with 1,4-dioxane as solvent for 4 

h. By contrast, good benzyl alcohol conversions 

were observed tetra-nuclear macrocyclic Zn(II) 

complex (1), suggesting that complex (1) could 

catalyse the oxidation of benzyl alcohol. For tet-

ra-nuclear macrocyclic Zn(II) complex (1), the 

benzyl alcohol conversion and benzaldehyde se-

lectivity were 37.1% and 5.2% at 90 °C for 4 h 

under 5 bar O2. When the reaction temperature 

increase to 100 °C, the benzyl alcohol conver-

sion and benzaldehyde selectivity greatly en-

hanced to 78.1% and 29.2%. The conversion of 

benzyl alcohol and selectivity of benzaldehyde 

were 49.0% and 10.8% at 100 °C for 4 h under 3 

bar O2. The observed main by-product is benzo-

ic acid, together with amounts of benzyl benzo-

ate. The selectivities of benzoic acid are 55.3%, 

45.4%, 47.3% for complex (1) on oxidation reac-

tions under 90 °C 5 bar, 100 °C 5 bar, and 100 

°C 3 bar, respectively. The highest benzyl alco-

hol conversion (78.1%) and benzaldehyde selec-

tivity (29.2%) were obtained at 100 °C for 4 h 

under 5 bar of O2. Nabae et al. found that HBPI 

(hyperbranched polyimide) functionalized with 

TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) 

could works as a heterogenous catalyst for the 

benzyl alcohol oxidation in the presence of a 

catalytic amount of HNO3 [34].  

The benzyl alcohol conversion and benzalde-

hyde selectivity are 11% and 100% on TEM-

PO/HBPI, respectively [34]. Li et al [35]. re-

ported that conjugated metalloporphyrin poly-

mers (MnP-AMPs) with BET surface area of 

345 m2/g had good catalytic performance for 

the oxidation of benzyl alcohol, achieving com-

plete conversion within 2 h and benzaldehyde 

selectivity of 98%. Asgharnejad et al. [36] syn-

thesized three-dimensional copper-based coor-

d i n a t i o n  p o l y m e r s  [ C u ( 1 , 4 - B D C -

B r ) ( D A B C O ) 0 . 5 ] · x D M F · y H 2 O  u s i n g 

Cu(NO3)2·3H2O, triethylenediamine (DABCO), 

2 -bromoterephtha late  (1 ,4 -BDC-Br) , 

CH3COOH, and DMF. The copper-based coor-

dination polymers exhibited good activity 

(conversion: 38%) and selectivity to benzalde-

hyde (78%) in the benzyl alcohol oxidation us-

ing tert-butyl hydroperoxide as an oxidant in 

DMF at 40 °C for 4 h [36]. Based on the above 

results, the catalytic activity and selectivity of 

complex (1) in the oxidation of benzyl alcohol 

was lower than MnP-AMPs catalyst. Although 

the selectivity of benzaldehyde is less than 

those of TEMPO/HBPI and [Cu(1,4-BDC-

Br)(DABCO)0.5]·xDMF·yH2O, the complex (1) 

could oxidized benzyl alcohol with high activity 

using O2 as sole oxidant without adding any 

other substances. 

To examine the scope of substrate of the oxi-

dation reaction, we extended our studies to dif-

ferent combinations of alcohols. The results are 

Entry Substrates Conversion (%) Aldehyde Selectivity (%) Acid Selectivity (%) 

1 4-chlorobenzyl alcohol 82.1 27.2 50.3 

2 4-methylbenzyl alcohol 81.6 28.9 27.0 

3 4-methoxybenzyl alcohol 86.4 7.7 60.7 

4 n-butanol 86.2 24.9 51.9 

Table 4. Catalytic activities of complex (1) for the oxidation of various alcohols.  

Note: reaction condition: complex (1) (0.05 g),100 °C, 5 bar, 4 h. 

Entry Catalysts 
Temperature 

(°C) 

Pressure 

(bar) 

Reaction 

time (h) 

Conversion 

(%) 

Benzylaldehyde 

Selectivity (%) 

Benzoic acid 

Selectivity(%) 

1 Complex (1) 90 5 4 37.1 5.2 52.3 

2 Complex (1) 100 5 4 78.1 29.2 45.4 

3 Complex (1) 100 3 4 49 10.8 47.3 

Table 3. Oxidation of benzyl alcohol to benzaldehyde on tetra-nuclear macrocyclic Zn(II) complex (1) in 

1,4-dioxane. 
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summarized in Table 4. Aromatic alcohols in-

cluding those bearing functional groups, such 

as: alkoxy, alkyl, and chloro, were able to un-

dergo the corresponding oxidation reaction, and  

afforded good conversions of alcohols in the se-

lective oxidation reaction. The conversions are 

82.1%, 81.6%, and 86.4% for 4-chlorobenzyl     

alcohol, 4-methylbenzyl alcohol, and                  

4-methoxybenzyl alcohol, respectively. The na-

ture of substituents (electron with drawing or 

electron-donating) has an ignore influence on 

the catalytic activity. Moreover, n-butanol also 

displayed a high catalytic activity with conver-

sion of 86.2%. The selectivities of aldehydes are 

27.2%, 28.9%, 7.7%, and 24.9% for                       

4-chlorobenzyl alcohol, 4-methylbenzyl alcohol,  

4-methoxybenzyl alcohol, and n-butanol,        

respectively. It gives high selectivity of by-

product acids, and the selectivities of acids are 

50.3%, 27.0%, 60.7%, and 51.9% for                   

4-chlorobenzyl alcohol, 4-methylbenzyl alcohol, 

and 4-methoxybenzyl alcohol, respectively. 

 

4. Conclusions 

In summary, a new tetra-nuclear macrocy-

clic Zn(II) complex, ZnL4(Phen)2 (1) has been 

synthesized and structural characterized by el-

emental analysis, IR, and single-crystal X-ray 

diffraction analysis. The selective oxidation re-

actions of benzyl alcohols catalyzed by complex 

(1) have been investigated. 
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