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Abstract

The objective of this study was to analyze the catalytic performance of series of cobalt-modified Zeolite-4A support-
ed catalysts for the syngas (CO and H2) production at 800 °C via the partial oxidation of methane (POM). The
Col/Zeolite-4A catalyst was synthesized using a two-step hydrothermal method from coal fly ash. The synthesized
catalysts were characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive
X-ray (EDX), and Thermogravimetric Analysis (TGA). The catalyst shows a crystalline structure with stability up
to 900 °C. The catalytic performance analysis shows the CH4 conversion increases from 29 to 68% for 0 and 10 wt%
Co over Zeolite-4A, respectively. The Hs selectivity was improved from 28-56%, while CO selectivity increased
from 24-52 % making H2/CO ratio > 1. The stability analysis shows the 10% Co/Zeolite-4A withstand for 24 h a
time on stream (TOS). Finally, the spent catalyst analysis was carried out to check the carbon formation along
with its structural analysis. The minimal carbon formation is analyzed in 24 h TOS for POM reaction.
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1. Introduction fects and transition towards zero emission fuels.
Hydrogen, due to its high energy density and re-
newability, has been the major focus [1,2]. How-
ever, the renewable hydrogen production still
needs to grow exponentially to meet the energy
demands of the world. Therefore, there is a need
* Corresponding Author. of transifcion techniques to prod}lce hydrpgen
Email: asif@uspcase.nust.edu.pk (A.H. Khoja); from fossil fuels to consume them in an environ-
Telp.: +92-51-8865343

Since the discovery of the ill effects of green-
house gases (GHGs), the emphasis of the scien-
tific community has been to mitigate those ef-
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mentally friendly way with minimum GHG
emissions [3—6].

Obtaining valuable chemical products from
CHj4 has been studied extensively [7—10]. Com-
monly, this is achieved by obtaining syngas
from CHs [3,11,12]. The main component of
natural gas is CH4 which itself is a GHG but
can be used in green energy applications which
have been a focus of researchers owing to their
high efficiency and low emissions [13-16]. The
CHyj is usually converted to syngas using steam
methane reforming [17], dry reforming [18—20],
and partial oxidation of methane (POM) [4,21—
23]. Both the reforming processes are very en-
dothermic, i.e. high temperature and/or high
pressure of CHy is required, whereas none of
these are required for POM to syngas as it is an
exothermic process [4,24]. Moreover, POM
yields a hydrogen to carbon monoxide ratio of
>1 which is ideal for Fischer—Tropsch synthesis
for liquid fuel production [9,22,25].

A vast number of catalysts have been stud-
ied and proposed for POM to syngas [3,4,21,24,
26-28]. Kobayashi et al. [27] used Rh/zeolite
catalyst and were able to obtain conversion of
84% with a Hao/CO ratio of 2.0 at 600 °C and the
catalytic performance further improved with
the addition of cobalt [28]. Using of cobalt as
catalyst with Co304 as the key active phase is
usually considered a less expensive and practi-
cal substitute to costly noble-metal based cata-
lysts which possess a higher activity [29]. Co-
balt excellent catalytic activity is attributed to
its good redox properties, especially, the ease
with which cobalt ions can switch between
their oxidation states of +2 and +3 allowing the
lattice oxygen to move easily [2,30,31].

To enhance the catalytic activity of cobalt,
the most used strategy is to disperse it over a
porous support, increasing the available sur-
face area for the reaction to take place
[1,26,32]. Usually this results in Co304 having
small crystallite size and high specific area, but
it can result in strong cobalt-support interac-
tions which can negatively affect the redox
properties of cobalt [33,34]. This problem can
be dealt with by using zeolite supports which
has capability to improve the Co dispersion and
provide more active sites [21]. Zeolite can be
easily synthesized from a waste coal fly ash.
Fly ash is another waste material which is dif-
ficult to handle in coal fired power plants [31].

In this study, zeolite-4A was synthesized
from coal fly ash using two step hydrothermal
reaction. The prepared zeolite was then im-
pregnated with different Co loadings and was
analyzed using X-ray Diffraction (XRD), Scan-
ning Electron Microscope (SEM), Energy Dis-

persive X-ray (EDX), and Thermogravimetric
Analysis (TGA). The catalytic activity tests of
all the samples were performed. The stability
test of the best performing catalyst was carried
out for 24 h. The spent catalysts were analyzed
using SEM and TGA analysis for carbon for-
mation analysis.

2. Materials and Methods
2.1 Synthesis of Zeolite-4A from Coal Fly Ash

Coal fly ash which had been obtained from
local coal plant is a waste and is very hazard-
ous to environment, therefore, converting the
fly ash into other useful products is very ad-
vantageous. Zeolite-4A preparation from fly
ash 1s quite easy as the fly ash consists of com-
pounds, which are main constituents of Z- 4A
[35]. Zeolite-4A was prepared by 2 step hydro-
thermal treatment method [26]. First the col-
lected fly ash was dried, crushed, and after
sieving it from a screen of 0.2 mm, 30 g of fly
ash was introduced into 5 M NaOH solution
(ACS reagent) in 700 mL beaker. The tempera-
ture for the dissolution was kept at 100 °C for 2
h with nonstop stirring at 300 RPM using mag-
netic stirrer. Filtration process was then car-
ried out to obtain a clear solution. The molar
ratio of the synthesized mixture was adjusted
as Si102/Al:03s = 1, Na0/Si02 1-2, and
H20/NazO =~ 40 for the synthesis of single
phase and pure Z-4A [36]. A mixed solution
was prepared to attain this ratio; therefore,
200 mL of aluminate solution (5 M NaOH solu-
tion and 3 g of Al powder) was added to clear
filtrate Fly ash solution. Then this solution was
stirred for 30 minutes at room temperature at
500 RPM. Primary gel was prepared by aging
solution for 12 h overnight. After this the solu-
tion was filtered and filtrate were kept in Tef-
lon autoclaves (heat resistant templates) and
placed in oven for 1.5 hour for 90 °C and then
for 2 h at 95 °C. After that solution was cooled
for 12 h at room temperature and then it was
again filtered. The obtained residue on filter
paper was dried in oven as the dried product is
Zeolite-4A. The dried sample was then calcined
at 900 °C. After preparation, characterization,
and analysis of its various properties, Zeolite-
4A was incorporated as a catalyst support. Fig-
ure 1 shows the schematic route used for the
synthesis of Zeolite-4A.

2.2 Synthesis of Co/Zeolite-4A Catalyst

The 5 wt% solution of cobalt was prepared
by dissolving cobalt(Il) nitrate hexahydrate
(Co(NO3)2.6H20) (Sigma Aldrich, 99.99% pure)
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precursor salt in DI water. Then Zeolite-4A was 2.3 Catalyst Characterization
added to the solution and stirred for 15
minutes at 60 °C. After stirring, the samples
were washed with distilled water and were
dried overnight at 110 °C in oven. Same process
was repeated with 2.5, 7.5, and 10 weight per-
cent cobalt loadings. Before usage of prepared
catalyst for syngas production they were cal-
cined at various temperature of 500, 600, 700,
and 800 °C for 4 h. Figure 2 shows the synthe-
sis route used for the preparation of Co/Zeolite-
4A catalyst preparation.

Fly ash , ‘ 1

0.02 mm fly ash 30gFlyAsh !
Sieving

The crystallinity and structure of the fresh
catalyst was determined with X-Ray diffraction
(XRD) using D-8 Advance (Bruker, Germany)
with exciting wavelength of Cu-Ka radiation (A
=0.15418 nm). The scan rate was set at 0.2 °s~1
for 20 = 10° to 80°. JEOL scanning electron mi-
croscope (SEM) (Japan, JSM 6490-A) was used
for surface morphological analysis of the pre-
pared Zeolite-4A support and was also used for
the determination of the surface morphology of
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Figure 1. Schematic of Zeolite-4A synthesis via two step hydrothermal process from coal fly ash.
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Figure 2. Synthesis of Co/Zeolite-4A.
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the prepared Co based catalyst. The sample
was gold coated before use for the analysis of
SEM/EDX.

Thermal analysis was performed by (TA in-
struments USA) TGA Thermal Gravimetric an-
alyzer. Samples were heated from 25 °C to 900
°C with a heating rate of 10 °C/min under N2
flowrate of 50 mL.min~! [37]. The product gases
of POM were analyzed with Gas Chromatog-
raphy (GC-2010 Pro, SHIMADZU Japan)
equipped with a TCD column (RT-MS5A) capa-
ble of detecting Hz, CO, COg2, and CHa.

2.4 Experimental Setup for Partial Oxidation of
Methane (POM)

Figure 3 shows the schematic of the experi-
mental setup used to carry out POM reaction.
The prepared cobalt loaded catalyst with vary-
ing amount of cobalt were mounted into, Parr
Inc. (USA) fixed bed reactor. CH4 and O2 were
introduced into the reactor with a ratio of 2:1.
A thermocouple was associated with power con-
troller to control the temperature of reactor.
The rector was made of SS-316 having an inner
diameter of % inch. The prepared catalysts
were sandwiched between quartz wool and in-
serted into the center of the rector. The product
were analyzed on Gas Chromatography (GC
Shimadzu 2010) using TCD column [31].

2.5 Catalytic Activity Performance Calcula-
tions

The catalytic performance of Co/Zeolite-4A
for POM was visualized by calculating CHy
conversion, Hz selectivity, CO selectivity, and
H2/CO ratio. CH4 conversion, Hz selectivity, CO
selectivity, and H2/CO ratio were calculated us-
ing Eqgs. 1-4.

CH4 in _CH4 out
— A 100% (1)
CH

4

CH, conversion (XCH4 )% =

nH
H, selectivity(S,,2 )% = (zing;pr;duced <100%  (2)
4 ) converted
CO Selectivity (Sc, )% = €Ot x100%  (3)
0 (nCH 4 ) y
converte

H . (l’lH2 ) produced
% 7o) ratio = W (4)

produced

3. Results and Discussion
3.1 Physicochemical Properties of Catalyst

Figure 4 shows the XRD spectra obtained
for Zeolite and Co/Zeolite-4A. Zeolite-4A was
matched with JCPDS card #39-0222 while
Co203 was matched with JCPDS card
#42-1467. The cobalt oxide that formed as a
result of impregnation was found to possess cu-

Gas Mixing Tank

Thermocouple

= GC-TCD

L -
t
Thermal Reactor« | ’
Catalyst i
CH, P8

Gaseous C] 1

Condenser

Figure 3. Experimental setup for catalytic partial oxidation of methane.
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bic crystalline structure possessing the Fm3c
space group. Figure 5 shows the SEM micro-
graphs of Zeolite-4A and Co/Zeolite-4A at a
magnification of 1 pm. It can be seen from the
images that the zeolite itself possesses a flaky
structure. Figure 5 (b) shows the SEM images

Co-Zeolite
Zeolite Zeolite-4A: PDF: 39-0222)

Co0,0,: PDF: 42-1467

Cubic crystalline structure
space group of Fm3c

Intensity (a.u)

20()

Figure 4. XRD analysis of Zeolite-4A and
Col/Zeolite-4A.
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Figure 5. SEM Micrographs (a) Zeolite-4A (b)
ColZeolite-4A.

of Zeolite-4A after impregnation with cobalt.
The flake structure of Zeolite-4A can be seen
and possibly the cobalt particles are dispersed
over the surface. Figure 6 shows the EDX re-
sults of Co/Zeolite-4A. Since the precursor of
Zeolite-4A, coal fly ash, consists of multiple
metal oxides which got incorporated in the
structure of Zeolite-4A, can be seen. The EDX
results are in line with the XRD results and
show that Co/Zeolite-4A was obtained, where
we can see the presence of possible elements in
the provided composition including cobalt.

Spectrum 3

Full Scale 324 cts Cursor: 0.000 ke’

Figure 6. EDX analysis of Co/Zeolite-4A.
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Figure 7. TGA analysis of fresh (a) Zeolite-4A
before calcination (b) Co/Zeolite-4A after cal-
cination.
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Figure 7(a-b) shows the thermogravimetric
analysis results of Zeolite-4A and Co/Zeolite-
4A. As can be seen in the graph, the Zeolite-4A
initially loses its moisture, ~3%, till 200 °C, the
second weight loss between 200—600 °C can be
attributed to the desorption of volatiles within
the zeolite lattice and the third weight loss in
the region of 600—750 °C can be attributed to
the formation of stable and pure Zeolite-4A
[36]. The TGA analysis shows the calcined
ColZeolite-4A is highly stable at high tempera-
tures. The weight loss of ~2.5% can be attribut-
ed to moisture loss absorbed and adsorbed in
the Zeolite-4A framework. Once all the mois-
ture is removed, no more weight loss is ob-
served.

3.2 Catalyst Screening and Stability Analysis
for POM

Figure 8 shows the results of catalytic
screening test of Zeolite-4A, 2.5% ColZeolite-
4A, 5% ColZeolite-4A, 7.5% ColZeolite-4A, and

10% ColZeolite-4A. As can be seen in Figure 8
(a), Zeolite-4A itself possesses moderate activi-
ty for POM as average CH4 conversion is ~30%
with He and CO selectivity of ~28% and ~24%,
respectively. However, as soon as the Zeolite-
4A is impregnated with Co, the average CHj
conversion increases significantly and achieves
a maximum of ~68% for 10% Co/Zeolite-4A.
Figure 8 (b,c) show that the average Hz and CO
selectivity follow a similar trend and reach
~56% and ~52%, respectively. Figure 8 (d)
shows that the Hz to CO ratio also stays >1 for
all the compositions, indicating that Co/Zeolite-
4A catalysts are very practical for industrial
applications.

The catalyst stability test carried out for
10% ColZeolite-4A is presented in Figure 9.
The catalyst was operated continuously for 24
h. The CH4 conversion initially increases for 5
h. and stabilizes. The CH4 conversion results
than start declining gradually after 11 h and
follows the declining trend until the end of the
run. The Hz and CO selectivity results follow a

70 | P Zectite-2A [ 2.5 % Co'Zeolite-4 A
B8 5 % Co/Zeolite-4 A B 7.5 % Co/Zeolite-4A
B 10 % Co/Zeolite-4A
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7 5 % Co/Zeolite-4 A S 7.5 % Co/Zeolite-4A.
Il 10 % Co/Zeolite-4A
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Figure 8. Catalyst screening (a) CH4 conversion (b) H2 selectivity (c) CO selectivity (d) Ha/Co ratio;
flow rate 30 mL.min"1, cat loading 0.25 g, reaction temperature 800 °C, CH4/O2 = 2.
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similar trend. Moreover, The Hz to CO ratio
stays almost the same for 24 h and stays >1.
The decrease in catalytic performance can be
attributed to the formation of hot spots which
result in the structural collapse and aggrega-
tion of the active phase [38,39].

3.3 Characterization of Spent Catalyst

Spent catalyst of 10 wt% Co/Zeolite-4A was
analyzed using SEM and TGA. The analysis
shows the change in surface morphologies and
crystal structure. Figure 10 (a) depicts the
weight loss trend of the spent catalyst. Two
major weight losses can be seen in the graph.
The first major weight loss is attributed to the
oxidation volatile organics formed during the
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Figure 9. Effect of time on stream (TOS) on
catalytic performance of 10 wt% Co/Zeolite-4A.
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POM reaction and deposited on the surface of
the catalyst, while the second weight loss, after
700 °C, can be attributed to the oxidation of
graphitic carbon [4]. Figure 10 (b) presented
the SEM micrograph obtained for the spent
catalyst. The SEM image reveals that the sur-
face morphology has changed considerably as
majority of the surface is covered with deposit-
ed carbon. The deposited carbon can be seen to
have granular structure. The coke formation
can occur in catalytic partial oxidation of CHy
due to the formation of hot spots on the catalyt-
ic surface due to the fact that Zeolite-4A has in-
sulating properties and is unable to dissipate
heat properly [40]. The catalytic stability test
also see a decline in performance and are sup-
ported by the SEM images.

4. Conclusions

Cobalt loaded Zeolite-4A with different Co
loadings were examined as catalyst for the
POM with CH4 to Ozratio = 2. The TGA of the
prepared catalyst showed appreciable stability
possessed by Co/Zeolite-4A. The SEM images
showed that cobalt was successfully impregnat-
ed onto the Zeolite-4A framework. The catalyt-
ic activity test showed that Co/Zeolite-4A pos-
sess good catalytic activity for the POM achiev-
ing a maximum of ~68% average CHsconver-
sion and a maximum of Hz and CO selectivity
average of ~56% and ~52%, respectively. The
TOS test revealed that the catalyst possesses a
good catalytic stability as CHs conversion of
>50% can be seen even after 24 h. of continu-
ous operation. Therefore, it can be concluded
that Zeolite-4A framework can be used as po-

2C0[ZeORE4A spent

o, el
. e 2
SEM HV: 20.0 kV WD: 9.17 mm VEGA3 TESCAN|
View fleld: 4.56 pm Det: SE

SEM MAG: 45.5 kx Date(m/d/y): 10/16/20
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Figure 10. (a) TGA analysis of spent Co/Zeolite-4A (b) SEM analysis of spent Co/Zeolite-4A.
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tential catalyst support for industrial applica-
tions specially in reforming techniques for Hs
production.
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