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Abstract 

Oil palm shell (OPS) constitutes 60% of the waste generated during the processing of palm oil. However, OPS can 

potentially be converted into energy and chemicals through pyrolysis. The purpose of this study is to determine 

and analyse the effect of acid treatment time on the characteristics of natural zeolites, which were then applied to 

oil palm shell pyrolysis. The effect of the acid treatment time on the products of the pyrolysis was also studied. The 

acid treatment time was varied: 1, 3, and 5 hours. The crystallinity of the natural zeolites was determined by       

X-ray diffraction (XRD). Solid, liquid and gaseous pyrolysis products were observed. Proximate, ultimate, and heat 

analysis were performed on the solid product. The liquid product was characterised using gas chromatography-

mass spectrometry (GC-MS). Gas Chromatography (GC) was performed to analyse the composition of the gases 

produced. The results obtained from this study indicate that longer reflux times reduced the crystallinity of the ze-

olites. The addition of the zeolite catalysts increased the liquid products of pyrolysis from 24.5 wt% over the parent 

to 24.6–37.1 wt% over the acid-treated natural zeolites. The reduction of oxygenated compounds in bio-oil was ob-

served in the amount of acetic acid and acetone produced. 
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1. Introduction 

According to the Agency for Assessment and 

Application of Technology [1], energy needs in 

Indonesia increased continuously in 2016–2050 

with an average GDP growth rate of 6.04% per 

year and population growth of 0.71% per year, 

resulting in a final energy growth rate of 5.3% 

per year. With the demand for energy increas-

ing every year, it is necessary to provide alter-

native renewable energy resources, such as bio-
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mass. Indonesia has a thriving plantation and 

agricultural sector, which has the potential to 

supply raw materials for making biomass. One 

rapidly growing source of biomass in Indonesia 

is palm oil. The Indonesian Palm Oil Associa-

tion reports that the potential for biomass pro-

duction in the Indonesian palm oil industry in 

2018 will reach 9.46 million tons. 

Palm oil processing not only produces palm 

oil but waste from it can also be used as a bio-

mass product, which can be used as an alterna-

tive energy source. At present, oil palm shell 

waste is an under utilized resource. To process 

the oil palm shell, several methods can be used, 

one of which is pyrolysis. 

https://creativecommons.org/licenses/by-sa/4.0
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Pyrolysis is the process of thermally decom-

posing biomass at temperatures of 350–650 °C 

without involving the atmosphere or any other 

source of oxygen in the process [2]. The fast py-

rolysis method is used because it can produce a 

large yield of bio-oil products, greater than 

60%. The pyrolysis method can also be used as 

an alternative process to generate liquid pyrol-

ysis products, which can become fuel [3]. Bio-oil 

products from the pyrolysis process still have a 

high oxygen content from the obtained liquid 

properties. This makes it difficult to integrate 

bio-oil products into the existing oil process in-

frastructure. An increased number of routes for 

the exploitation of bio-oil products in the pyrol-

ysis process is necessary. Processing by catalyt-

ic pyrolysis is therefore a technique of interest 

to improve the quality of bio-oil for use as fuel 

[4]. Kantarelis et al. [4] have used catalytic py-

rolysis of biomass using a modified synthetic 

HZSM-5 zeolite catalyst to improve the quality 

of the liquid products with low oxygen content 

and increased coke formation [4]. Because the 

use of synthetic zeolites is relatively expensive, 

the use of natural zeolites in catalytic pyrolysis 

processes is of interest. 

Natural zeolites are derived from rocks that 

have been changed by chemical and physical 

processes. Natural zeolite is obtained by min-

ing products directly from nature, so they are 

cheaper than synthetic zeolites. However, natu-

ral zeolites have some weaknesses, such as in-

homogeneous pore size, low catalytic activity 

and many impurities. In order to use these nat-

ural zeolites as catalysts, it is necessary to im-

prove the zeolites. The dealumination process 

is one modification method that can be used to 

open zeolite pores by releasing aluminium from 

the open structure of zeolites using acids [5]. 

Acidification is a method that can remove im-

purities carried on the zeolite pores and im-

prove catalyst performance. 

According to the results of Kurniawan et al. 

[6], modification of natural zeolites using 1 M 

hydrochloric acid (HCl) with different times of 

hydrothermal recrystallisation (2, 14, and 26 h) 

showed increased hydrothermal recrystalliza-

tion with high zeolite crystallinity. Treatment 

using mild concentrations of acid and short hy-

drothermal duration will retain the zeolite 

framework. The crystallinity of zeolites is di-

rectly proportional with other variables, such 

as micropore surface area, mesopores, Si/Al ra-

tio and the acidity of zeolite [6]. Wibowo and 

Lestari have suggested the application of natu-

ral zeolites modified with different concentra-

tions (0.5, 1, 1.5, and 2 M) of sulfuric acid 

(H2SO4) to the pyrolysis process. The use of 1 

M sulfuric acid increased the Si/Al ratio and 

produced a high yield of bio-oil. Research with 

similar methods using zeolites as a catalyst for 

the pyrolysis process is rarely reported [7]. 

The aim of this research is to extend the 

studies that have been conducted by Wibowo 

and Lestari, focusing on the determination of 

the effect of the duration of refluxing with 1 M 

sulfuric acid as the catalyst activation process 

on the characteristics of natural zeolites and 

the effects on the characteristics of the pyroly-

sis products.  

   

 

2. Materials ad Methods 

This research consisted of two stages, the 

zeolite activation stage and the pyrolysis stage. 

The first stage of this research is the activation 

of the natural zeolite using 1 M H2SO4 (98%, 

Merck) with a reflux time of 1 h (BNZ-1), 3 h 

(BNZ-3) and 5 h (BNZ-5). The second stage is 

the pyrolysis of OPS with the addition of the 

zeolite catalyst at 500 °C. 

 

2.1 Materials 

The materials used in this research were 

OPS waste which was obtained from PTPN VI 

Malingping, Bayah. Natural zeolites were ob-

tained from Bayah District, Banten, Indonesia. 

 

2.2 Equipment 

The equipment used in this research includ-

ed a set of reflux devices for zeolite activation 

and a set of pyrolysis tools for the pyrolysis 

process. A set of pyrolysis tools is shown in  

Figure 1. Figure 1 shows the parts of the pyrol-

ysis apparatus: (1) reactor, (2) temperature Figure 1.  Experimental apparatus for pyrolysis 
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control, (3) pipe, (4) double pipe condenser, (5) 

gas reservoir, (6) analytical balance sheet, (7) 

fluid collector, (8) coolant pump, (9) thermome-

ter, (10) coolant water tank, (11) nitrogen flow 

pipes, (12) nitrogen flow sealers.  

 

2.3 Zeolite Activation 

The type of catalyst used in this research 

was Bayah natural zeolite (BNZ), which was 

obtained from the zeolite mining area in 

Bayah, Lebak Regency, Indonesia. Up to 100 g 

of zeolite was crushed and screened to obtain a 

material size of −10 +14 mesh. After the cata-

lyst preparation was completed, the sample 

was refluxed using 1000 mL of 1 M H2SO4 for 

1, 3 and 5 h at a temperature of 90 °C. Then 

the sample was rinsed using distilled water un-

til the pH of the sample was neutral. After 

that, the sample was dried at room tempera-

ture for 24 h. Furthermore, the sample was 

dried in an oven at a temperature of 110 °C for 

1 h to remove the remaining water content of 

the sample. After that, the sample was calcined 

for 6 h at a temperature of 500 °C to remove 

the anions on the surface of the catalyst. Final-

ly, the zeolite sample was placed in a desicca-

tor. Some of the activated zeolites were charac-

terized using XRD and used as catalysts in the 

pyrolysis process. 

 

2.4 Pyrolysis Process 

The raw material used in this research is oil 

palm shell (TKS) from PTPN VI Malingping 

that has been detached from its skin and dried 

in sunlight to reduce the water content. The 

dried TKS was crushed into 5–10 mm sized 

particles, and 200 g aliquots were prepared. Af-

ter the raw material preparation process was 

complete, the TKS was first pyrolyzed without 

using a catalyst. In this study, five pyrolysis 

variations were used, namely: without a cata-

lyst, with activated natural zeolite (BNZ-0) cat-

alysts, and with natural Bayah zeolite catalysts 

activated for different durations 1 h (BNZ-1), 3 

h (BNZ-3) and 5 h (BNZ-3). Furthermore, the 

system was cooled using a double pipe conden-

ser at a temperature of 18–20 °C. The reactor is 

heated gradually to a temperature of 500 °C 

and kept constant for 1 h. The volatile gases 

were condensed into a liquid product in the 

condenser, which is weighed every 3 min. The 

pyrolysis process was carried out at atmospher-

ic pressure. The reaction was considered to 

begin (0 min) after the desired pyrolysis condi-

tions were reached. 

2.5 Characterization of the Zeolite 

The zeolites were characterized by their 

crystallinity and morphology before and after 

activation. The zeolite crystallinity analysis 

was carried out using a Rigaku Smartlab 3 kW 

X-ray diffractometer (XRD) at the LIPI Physics 

Laboratory, Serpong, Tangerang, Indonesia. 

 

2.6 Characterization of Pyrolysis Products 

The characterization of pyrolysis products 

includes the analysis of the solid (char), liquid 

(bio-oil) and gas products. The proximate con-

tent of the raw materials and the solid prod-

ucts were analyzed using the Leco TGA-601 

thermogravimetric analyzer, while the ulti-

mate content of the raw materials and the solid 

products were analyzed using the Leco CHN-

2000 analyzer, both of which were used at the 

Research and Development Center for Mineral 

and Coal Technology, Bandung, Indonesia. The 

liquid products of pyrolysis were characterized 

using an Agilent 5973 gas chromatography-

mass spectrometer (GC-MS) at the Police 

Headquarters Forensic Laboratory, Duren 

Sawit, East Jakarta, Indonesia. The gaseous 

products of pyrolysis were characterized using 

a Shimadzu 8A TCD detector gas chromato-

graph (GC) at the RPKA Laboratory of the De-

partment of Chemical Engineering, University 

of Indonesia, Depok, Indonesia. 

 

3. Results and Discussion 

3.1 Characteristics of Zeolites 

Zeolite is a hydrated aluminosilicate miner-

al containing alkali and alkaline earth metals 

in a 3-dimensional framework. Minerals in zeo-

lites have interesting physical and chemical 

properties, including absorbing organic and in-

organic substances and can be used as cation 

exchangers and catalysts [8]. Natural zeolites 

are generally poor in crystallinity, have non-

uniform pore sizes, high numbers of impurities 

and low catalytic activity. Therefore an activa-

tion or modification treatment is needed before 

the zeolite is used. Acid, hydrothermal, calcina-

tion, oxidation and impregnation treatments 

have been shown to increase the Si to Al ratio, 

surface area and acidity of zeolites [9]. 

Table 1 shows that the longer the time tak-

en to activate the zeolite, the more mass is lost, 

most likely because the crystal structure is 

damaged by the dealumination process. Not 

only Al is extracted: other metals, such as Fe, 

K and Ca, will also be extracted during acid 

treatment. Figure 2 shows that the zeolites 
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used in this study were dominated by mor-

denite. Impurities were also observed in the 

XRD patterns, which were identified as clinop-

tilolite. Ismettulloh et al. [10] have also con-

ducted an XRD analysis on the Bayah natural 

zeolites and reported mordenite, clinoptilolite, 

heulandite and quartz phases [10]. 

Figure 2 shows that the natural zeolite par-

ent (BNZ-0) and the natural zeolite activated 

with 1 M H2SO4 for 3 h (BNZ-3) produce differ-

ent XRD patterns. There was a decrease in in-

tensity in the BNZ-0 sample compared to   

BNZ-3. The diffraction peaks of BNZ-0 are 2ϴ = 

11.14º, 13.04º, 16.88º, 19.02º, 22.28º, 25.99º, 

26.79º, 28.08º, 29.93º, and 31.91º and all peak 

heights decreased in the BNZ-3 sample. The 

addition of H2SO4 to the zeolite activation pro-

cess causes the process of dealumination (Al 

that comes out of the zeolite framework). Simi-

lar research has been done by Suhendi et al. [7] 

who used an acid treatment that decreased the 

XRD intensity of the zeolite framework because 

of dealumination. The separation of Al atoms 

from the zeolite structure framework can cause 

decrystallisation, an increase in irregular crys-

tal structure, which reduces crystallinity [9]. 

This is also in accordance with a study conduct-

ed by Lestari [11] in which the process of dealu-

mination of natural zeolites using HCl and 

HNO3 damaged crystal structures [11]. The ac-

id treatment of natural zeolites caused the loss 

of zeolite crystallinity, and the decrease of crys-

tallinity led to a decrease in the number of acid 

sites, which was determined by py-FTIR spec-

troscopy and NH3-TPD. Furthermore, alumini-

um was extracted during the acid treatments 

as indicated by the XRF analysis [6]. 

Figure 2 shows that some peaks (10.01º, 

13.47º, 17.37º, 20.6º and 27.63º) in the diffrac-

tion spectrum of BNZ3 had high intensities 

compared to those of the BNZ-0 sample. The in-

creased intensity of several peaks is possibly 

due to metal oxide impurities that exchange 

with the cation H+ on the zeolite surface, mak-

ing the surface clean from impurities. The zeo-

lite surface becomes more open so that the     

X-ray beam is completely diffracted by the zeo-

lite surface and not blocked by impurities, and 

thus the intensity becomes high, and the crys-

tallinity is high. Zeolites with mordenite phas-

es can be used as catalysts, adsorbents and ion 

exchangers because the cavities and channels 

in zeolites with mordenite phases have pores 

large enough (+ 7Å) to be used as metal carri-

ers [12].  

 

3.2 Pyrolysis Temperature and Mass Profile 

According to Basu [2], the pyrolysis process 

has been divided into four stages based on 

their thermal properties. The first stage was 

the drying stage, which takes place at a tem-

perature of ~100 ºC. As can be seen in Figure 3, 

the pyrolysis process in this study was initiat-

ed at a temperature of ~35–100 ºC, which took 

place between minutes 0 and 6, and it was 

called the drying stage. During the initial 

phase of heating, the biomass at these low tem-

peratures, moisture and some bound water are 

released through the pores and surface of the 

biomass. The moisture on the surface of the bi-

omass (free moisture) evaporated. This causes 

a decrease in char mass and an increase in bio-

oil and gas masses [2]. As shown in Figure 3, 

there is a decrease in char mass and an in-

crease in the gas mass starting in the 9th mi-

nute and an increase in bio-oil mass in the 

12th minute of the process. 

Furthermore, the initial stage of the pyroly-

sis process takes place at a temperature be-

tween 100 and 300 ºC. Figure 3 shows that the 

initial stage of the pyrolysis process in this 

study occurred at the 6th minute range. At this 

stage, exothermic biomass dehydration occurs 

with the release of low molecular weight water 

and gases such as CO and CO2 [2]. This is 

caused by hemicellulose undergoing structural 

cracking (degrading). The main component in 

hemicellulose is xylan, which is the most un-

Acid Treatment 

Time (h) 

Mass Before 

Activation (g) 

Mass After 

Activation (g) 

1 100 78.4 

3 100 71.4 

5 100 65.6 

Table 1. The change of zeolite mass before and 

after the activation process. 

Figure 2. XRD patterns of BNZ-0 and BNZ-3. 
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stable compound and easily undergoes hydroly-

sis and dehydration. The degradation of xylan 

produces eight compounds: water, methanol, 

formic acid, acetic acid, propionic acid, hydroxy-

1-propanone, hydroxy-1-butanone and             

2-furfuraldehyde [13]. 

The intermediate stage, also referred to as 

primary pyrolysis, takes place at temperatures 

>200 ºC (200–600 ºC). As can be seen in Figure 

3, the intermediate stage occurs at the 9th mi-

nute in samples with catalysts and in the 12th 

minute in samples without a catalyst. Most of 

the steam and bio-oil is produced at this stage 

[2] due to the process of evaporation of most of 

the volatile substances, which is referred to as 

devolatilization [14]. This stage results in the 

decomposition of the large molecules of biomass 

particles into charcoal (primary charcoal), con-

densable gas (steam and bio-oil) and non-

condensable gas [2]. This is consistent with the 

results of this study in Figure 4, where, at this 

stage, there is a decrease in char mass and an 

increase in the mass of bio-oil and gas. The bio-

oil mass increased between the 12th and 54th 

minutes, after which the value obtained is con-

stant. The gas mass increased between the 9th 

and 27th minutes then the longer the mass pro-

duced will be increasingly reduced for a de-

crease in char mass starting in the 9th minute. 

At this stage, there is also a thermal decompo-

sition process, in which cellulose will form 

levoglucosan through the depolymerization pro-

cess. The cellulose dehydrated, decarbonated, 

and produced C2, C3, and C4 compounds. The 

volatile compounds come from the biomass due 

to the thermal decomposition process. Further-

more, the cellulose underwent a cracking reac-

tion (degradation) so that carboxyl compounds 

and oxygenated compounds were produced. 

Meanwhile, the lignin was dehydrated, depoly-

merized and carbonized, then it was thermally 

degraded into phenols, formic acid, CO2 and 

water [14]. 

The final stage of pyrolysis occurs at tem-

peratures of ~300–600 ºC. As seen in Figure 3, 

the final stage in this study occurred at the 9th 

minute for the BNZ-5 catalyst, the 12th minute 

for BNZ-0, BNZ-1 and BNZ-3, and the 15th mi-

nute for the catalyst-free sample. This final 

stage involved the secondary cracking of vola-

tiles into char, gas (non-condensable gas), and 

bio-oil (condensable gas). If the component re-

mained in the biomass long enough, the con-

densable gas with large molecular weights 

could be broken down, producing additional 

char (secondary char) and gas. However, if the 

condensable gas was removed quickly from the 

reaction site, it condensed to produce tar and 

bio-oil. Higher pyrolysis temperatures support 

hydrogen production, which will increase rap-

idly at ~600 ºC. This rapid increase is because, 

at this stage, long hydrocarbon chains break 

into short hydrocarbon chains. Then a reaction 

will occur between the primary cracking mole-

cules, such as the reaction between CO and wa-

ter, which produces H2 and CO2, which will re-

act to CH4 [2]. 

In the final step of pyrolysis, the tempera-

ture was kept constant at 500 ºC for 60 

minutes. This released compounds that re-

mained in the biomass. In Figure 4, at temper-

atures of ~500–600 ºC between the 15th and 

26th minutes, the mass of the gas continued to 

increase due to the occurrence of secondary vol-

atile cracking [2]. Unlike the gas products, at 

this final stage, the bio-oil mass continued to 

decrease. This is because the bio-oil mass has 

formed at a temperature of 500 ºC. 

In Figure 4, the profile of the liquid and gas 

products increases with the solid products. The 

use of catalysts accelerated the breakdown of 

long chain hydrocarbons into short chain hy-

drocarbons. The gas production is faster than 

without the use of catalysts. This is in accord-

ance with the research of Kumara, who has 

used zeolite catalysts in the pyrolysis of ma-

hogany wood powder. The use of zeolite cata-

lysts has increased the reaction rates, acceler-

ated the breakdown of the hydrocarbon chains 

and accelerated the distribution of the pyroly-

sis products [15].  

BNZ-1 most likely provided greater access 

to the acid sites for molecules during pyrolysis. 

Despite the reduced crystallinity of BNZ-1, the 

sample probably had much larger pore sizes af-

ter acid treatment. As a result, the mass trans-

fer through the diffusion mechanism was high-

Figure 3. Temperature profiles of oil palm 

shell with various variations. 
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er than for the zeolites that had not been treat-

ed with acid. However, the longer acid treat-

ment led to a sharp decline in the zeolite crys-

tallinity and reduced the number of acid sites 

as well. It can be seen in BNZ-5 (Figure 4e) 

that the pyrolysis rate became slower than that 

of BNZ-1.  

3.3 Product Distribution 

The solid yield was obtained from weighing 

the solid contained in the combustion reactor. 

Liquid yields were obtained from the condensa-

tion of vapor accommodated in the liquid out-

let: the output was measured and the mass of 

the liquid weighed. In contrast, the gas yield is 

obtained from the amount of water in a con-

tainer that is displaced by the gas formed in 

the pyrolysis process. This is called the water 

displacement principle; that is, the volume of 

gas formed is considered to be the same as the 

volume of water that is removed. 

Table 2 shows the product distribution data 

from the non-catalytic and catalytic pyrolysis 

processes. The yield of gas produced was high-

er than the solid and liquid yields. This result 

is different to that of Suhendi et al. [16], whose 

pyrolysis process has used zeolite that had 

been treated with acid and resulted in a higher 

production yield of liquid than solid and gas. A 

higher yield of liquid can happen because the 

more condensable vapor was produced than 

(a) 

(b) (c) 

(d) (e) 

Figure 4. Pyrolysis product mass profile; (a) Non-Catalytic, (b) BNZ-0, (c) BNZ-1Hour, (d) BNZ-3, (e) 

BNZ-5. 
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non-condensable vapor and solids. In this re-

search, the pyrolysis process using modified ze-

olite catalysts produced more non-condensable 

vapor than condensable vapor and solids. The 

different results in this research were caused 

by different application of acid, which produced 

differing pore sizes. 

The yield of solid products did not change 

significantly in the catalytic and non-catalytic 

pyrolysis processes, and remained in the range 

of ~29.56–30.47 wt%. Santiyo et al. [17] ob-

served a similar result, where catalytic and 

non-catalytic pyrolysis did not significantly in-

fluence the resulting solid product. The largest 

solid product formation occurred in pyrolysis 

without the use of catalysts with the produc-

tion of 30.47 wt% solid products and the small-

est formation occurred with the use of BNZ-3, 

which yielded 29.56 wt%. The magnitude of the 

distribution of solid yield products in the non-

catalyzed pyrolysis process is due to the ab-

sence of secondary cracking as a result of the 

use of zeolites which facilitated reactions such 

as cracking. 

In Table 2, it can be seen that the distribu- 

tion of liquid product yields is variable at 20.7–

37.09 wt%. The formation of liquid products in 

catalytic and non-catalyzed pyrolysis fluctuat-

ed. In the non-catalyzed pyrolysis process, the 

yield of liquid products was 24.55 wt%, and in-

creased with the use of BNZ-0 to 24.62 wt%. 

The yield increased again with the use of   

BNZ-1 to 37.09%, which then decreased with 

the use of BNZ-3 and BNZ-5 to 35.26 wt% and 

20.22 wt%, respectively (Table 4). From the da-

ta in Table 2, the highest liquid product yield 

data is obtained from the pyrolysis process us-

ing BNZ-1 with a yield of 37.09 wt% and the 

lowest liquid product yield is from the pyrolysis 

process using BNZ-5, at 20.22 wt%. 

In Table 2, there is an increase in liquid 

product yields during the catalytic pyrolysis 

process compared to the non-catalytic pyrolysis 

process. The addition of catalysts to the process 

of pyrolysis of OPS has been proven to increase 

the amount of liquid product yield compared to 

the process of pyrolysis without the use of cata-

lysts. This is similar to the research conducted 

by Sukarjo [18], in that catalysts allowed reac-

tions to take place more quickly or allowed re-

actions at lower temperatures due to changes 

that the catalysts trigger in reagents. In anoth-

er study, Ates et al. [19] have also experienced 

an increase in liquid product yield due to the 

unstable hydrocarbon component reacting to 

produce excess liquid products rather than 

forming short chain hydrocarbons (C1–C4). 

The most significant increase in this work oc-

curred with the use of BNZ-1 and BNZ-3 cata-

lysts and experienced a drastic reduction when 

BNZ-5 was used. This proves that activating 

BNZ by using a 1 M H2SO4 solution and vary-

ing the activation time has different effects on 

the liquid products. The decrease in liquid 

product yield is due to the large number of non-

condensable gas products formed, which pro-

duces more light hydrocarbon fractions in the 

cracking process that cannot be condensed [20]. 

In Table 2, the distribution of gas product 

yields is 32.44–49.35 wt%. The gas production 

data in Table 2 has increased in catalytic py-

rolysis using BNZ without activation and  

BNZ-5 but decreased with the use of BNZ-1 

and BNZ-3. In general, the addition of zeolite 

as a catalyst reduced the volume of liquid prod-

ucts due to the hydrocarbon cracking process 

enhanced by the zeolite catalyst. The cracking 

process breaks the long chain hydrocarbons in-

to short chain hydrocarbons. Thus, some short 

chain hydrocarbon compounds enter the gas 

phase and have a boiling point lower than the 

ambient temperature [21]. However, in this 

study, the yield of gas products decreased with 

the use of BNZ-1 and BNZ-3. The same thing 

has been done by Kim, where the gas product 

yield has decreased with the use of an E-paint 

type catalyst because the liquid and solid 

yields increased [22]. In this study, the de-

crease in gas product yield was caused by the 

absence of secondary cracking because the 

pores on the surface of the catalyst have been 

covered by coke so that condensable steam can-

not diffuse to the active center of the catalyst. 

Variation Solid (%wt) Liquid (%wt) Gas (%wt) 

Without Catalyst 30.47 24.555 44.975 

BNZ-0 30.065 24.625 45.685 

BNZ-1 29.97 37.09 32.44 

BNZ-3 29.565 35.265 35.17 

BNZ-5 29.95 20.7 49.35 

Table 2.  Product distribution. 



 

Bulletin of Chemical Reaction Engineering & Catalysis, 16 (3), 2021, 595 

Copyright © 2021, ISSN 1978-2993 

3.4 Char Characterizations 

In this study, pyrolysis experiments were 

carried out by comparing the pyrolysis process 

without a catalyst to pyrolysis using natural 

zeolites without activation (BNZ-0) and pyroly-

sis with natural zeolites activated with 1 M 

H2SO4 for 3 h. In Table 3, the distribution of 

char products does not change significantly 

even with the addition of a catalyst to the py-

rolysis process. 

In Table 3, the proximate and ultimate anal-

ysis results are given as follows: 

 

a. Moisture content 

The biomass contained two kinds of water 

content: inherent moisture, or free water from 

the biomass and free moisture, or water that 

sticks to the surface of the biomass [23]. High 

water content in biomass charcoal can reduce 

the usefulness and quality of the charcoal. The 

main effect of the high water content is a de-

crease in the calorific value when burning. Con-

versely, if the water content in the charcoal de-

creases, then it will increase the heating value. 

The process of pyrolysis can affect the water 

content of charcoal. In Table 3, the ratio of 

moisture in raw materials is 21 wt% to 1.82–

3.77 wt% for non-catalytic pyrolysis and cata-

lytic pyrolysis, respectively. In the pyrolysis 

process, there is a decrease in the moisture con-

tent of the pyrolysis charcoal product. The de-

crease in the moisture content of the biomass is 

caused by the 500 °C heating process during 

pyrolysis, which resulted in the loss of some of 

the moisture content in the biomass due to the 

thermal process in the pyrolysis process. This 

outcome is in accordance with the data ob-

tained by Damanik et al. [24]: in their study, 

the pyrolysis process can reduce the value of 

the moisture content in char products, which is 

21 wt% in raw materials to 3.77–6.18 wt% af-

ter the pyrolysis process. From the data ob-

tained, the lowest moisture value, of 1.82 wt%, 

from the catalytic pyrolysis variation using 

BNZ-3. 

 

b. Ash Content 

Ash is the residue from the combustion pro-

cess, which is in the form of minerals that do 

not contain carbon. The main components of 

ash are silica, aluminium, iron and calcium, 

and there are small amounts of magnesium, ti-

tanium, sodium and potassium [2]. In Table 3, 

the raw material had an ash content of 2.21 

wt%, which increased after the catalytic and 

non-catalytic pyrolysis to between 5.28–5.78 

wt%. The highest ash content, 5.78 wt%, was 

found following pyrolysis without catalysts and 

catalytic pyrolysis using zeolites without acti-

vation. The increased ash content of palm shell 

charcoal possibly occurred due to the formation 

of mineral salts and other particles because of 

carbon oxidation during the pyrolysis process 

[23].  

 

c. Volatile Matter 

Volatile matter content plays a role in 

providing the flame capability of a biomass. 

The amount of the volatile matter content will 

affect the quality of the biomass charcoal. Vola-

tile matter consists of liquid or condensable va-

por (mainly water, organic and lipids) and a 

small portion of gases or non-condensable va-

por (CO and CO2) [25]. In Table 3, it can be 

seen that the volatile matter content in the raw 

material is 69.19 wt%, which rose to 10.88–

Analysis Unit Raw Material 
Variation 

Without Catalyst BNZ-0 BNZ-3 

Moisture %wt (adb) 21 3.77 2.16 1.82 

Ash Content %wt (adb) 2.21 5.29 5.78 5.74 

Volatile Matter %wt (adb) 69.19 12.77 12.26 10.88 

Fixed Carbon %wt (adb) 18.91 78.17 79.80 81.56 

Heat cal/g (adb) 4437 7258 7392 7498 

C %wt (adb) 55.40 81.96 80.12 83.22 

H %wt (adb) 6.50 3.18 2.66 2.82 

N %wt (adb) 0.5 0.74 0.88 0.87 

O %wt (adb) 38.60 8.72 7.392 7.498 

S %wt (adb) 0.10 0.11 0.04 0.04 

Table 3. Analysis results of raw materials and pyrolysis products. 
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12.76 wt% after catalytic and non-catalytic py-

rolysis. The reduction in volatile matter con-

tent in palm shell charcoal products shows that 

the palm shell has been converted to a liquid or 

gas product during the pyrolysis process. The 

greatest decrease occurred in the catalytic py-

rolysis process using BNZ-3, which had a vola-

tile content of 10.88 wt%. A reduction in vola-

tile matter levels was also obtained by Suhendi 

et al. [16], who pyrolyzed OPS using catalysts 

activated with HCl solution for 1, 3 and 5 h 

with the volatile matter of the raw material 

equaling 69.45 wt% and the experiments using 

catalysts had results in the range of 14.41–

19.53 wt%. Our use of activated zeolite shows 

that the use of catalysts has an effect in reduc-

ing the content of volatile matter in the oil 

palm shell charcoal.  

 

d. Fixed Carbon 

Fixed carbon can be expressed as the 

amount of carbon contained in the material 

that remains after the volatile matter content 

is removed. Fixed carbon is the main content of 

a solid fuel. The fixed carbon content plays an 

important role in determining the heating val-

ue of a solid fuel. The greater the fixed carbon 

content is, the higher the heating value of the 

solid fuel is [25]. In Table 3, the fixed carbon 

values vary across the samples; the fixed car-

bon content of the raw material is 18.91 wt%, 

which rose to 78.17–81.56 wt% after catalytic 

and non-catalytic pyrolysis. There was an in-

crease in the fixed carbon content after the py-

rolysis process, which occurred along with the 

decrease in the moisture content and volatile 

matter in biomass. The higher the fixed carbon 

content of a biomass is, the higher the heating 

value of the biomass is. 

 

e. Caloric Value 

The heating value is the energy content or 

heat released from a combustion process. Gen-

erally, the heating value the main parameter 

used to determine the quality of a fuel. Table 3 

shows the calorific value of the raw material 

before the pyrolysis process was 4437 cal/g, 

which increased to 7258– 7498 cal/g after the 

catalytic and non-catalytic pyrolysis processes. 

The high heat value after the pyrolysis process 

is influenced by the carbon content and ash 

content. The higher the carbon content, the 

higher the calorific value, while a higher ash 

content reduces the calorific value [26].   

 

 f. Carbon (C) 

The carbon content in this study increased 

as shown in Table 3, where the content in the 

raw materials was 55.40 wt% and this rose to 

80.12–83.22 wt% after the catalytic and non-

catalytic pyrolysis processes. The increase in 

carbon content in charcoal products is caused 

by the release of the water content and volatile 

substances during the pyrolysis process [27]. 

 

g. Hydrogen (H) 

The hydrogen content in this study de-

creased, as shown in Table 3, with the raw ma-

terial containing 6.50 wt%, which dropped to 

2.82–3.18 wt% after the catalytic and non-

catalytic pyrolysis processes. The decrease in 

hydrogen levels in charcoal products is due to 

the decomposition of hydrogen and volatile 

matter, which evaporate on the cellulose and 

lignin components to form bio-oil products such 

as hydrocarbon cracking and gas products 

(non-condensable gas), including water, me-

thane and H2 [27].  

 

h. Oxygen (O) 

The oxygen content in this study decreased, 

as shown in Table 3, with the raw material 

containing 38.60 wt%, which rose to 7.392–8.72 

wt% after the catalytic and non-catalytic pyrol-

ysis processes. A decrease in oxygen content in 

charcoal products can be caused by the com-

bustion reactions that occur during the pyroly-

sis process, which produces oxygen that pri-

marily reacts with carbon content (C) [24].  

 

i. Nitrogen (N) and Sulfur (S) 

The nitrogen content in this study experi-

enced an insignificant increase (Table 3) from 

0.5 wt% for the raw material to 0.74–0.88 wt% 

after the catalytic and non-catalytic pyrolysis 

process. In contrast, the sulfur content experi-

enced a decrease and an insignificant increase 

(Table 3) with an initial value of the raw mate-

rial of 0.10 wt%, which changed to 0.04–0.11 

wt% after the catalytic and non-catalytic pyrol-

ysis processes. Low nitrogen and sulfur con-

tents will reduce the amount of NOx and SOx 

gas emissions from biomass combustion [14]. 

Low nitrogen and sulfur content can be ex-

pected because the majority of palm oil waste, 

including OPS, is cleaner and more environ-

mentally friendly than coal [28].  
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3.5 Bio-Oil Characterization 

The composition of bio-oil is very complex, 

but in general, it contains water, organic mat-

ter, and a small amount of pyrolysis ash. Or-

ganic compounds in bio-oil include alcohols, fu-

rans, phenols, aldehydes and organic acids. 

Bio-oil is a mixture of aqueous and non-

aqueous phases, as shown in Figure 5. The 

aqueous phase contains low molecular weight 

oxygenated organic compounds, whereas the 

non-aqueous phase contains high molecular 

weight oxygenated compounds, aromatic com-

pounds and polycyclic aromatic hydrocarbons 

[29]. The low viscosity layer is a product of the 

decomposition of cellulose and hemicellulose, 

while the lower layer, which has a low viscosi-

ty, is a high molecular weight substance de-

rived from lignin [29]. 

Acetic acid is a major component of the acids 

in bio-oil formed due to the deacetylation reac-

tion of hemicellulose [30]. Acetic acid in bio-oil 

increases the pH value and increases the corro-

sive nature of the bio-oil. In this work, the ace-

tic acid content was reduced by the addition of 

catalysts from 46.06% for the raw material to 

40.1%, 45.86%, 37.2% and 42.07% for the sam-

ple with a non-activated catalyst, BNZ-0,   

BNZ-1, BNZ-3 and BNZ-5, respectively. This is 

due to the decarboxylation reaction, which 

breaks the carboxylic chain group. This finding 

is in accordance with the research of Wibowo 

and Lestari [7], which compared the results of 

non-catalytic and catalytic pyrolysis of palm 

kernel shells, which reduced acetic acid levels 

from 48% to 42.59%, respectively, by using the 

Bayah natural zeolite as a catalyst. 

The addition of a catalyst also caused a de-

carbonylation reaction, that is, termination of 

the carbonyl group from the molecular struc-

ture. This can be seen from the decreased 

amount of acetone produced (0–1.22%) com-

pared to that produced in non-catalytic pyroly-

sis (1.37%). The termination of the carbonyl 

group in ketones will result in the formation of 

CO gas. In addition, the loss of ketone groups 

in bio-oil products can also be caused by the ox-

idation of ketone groups to acetic acid com-

pounds. This happened in the work of Alfikri 

[31], which carried out the pyrolysis of oil palm 

shell without catalyst, with non-activated cata-

lyst and catalyst activated with 0.5 M, 1 M, 1.5 

M and 2 M HCl solutions and yielded ketone 

contents of 5.94%, 5.04%, 1.47%, 1.61%, 1.8% 

and 0.9% respectively. 

Lignin is one of the biggest constituent ele-

ments of biomass. The phenol component found 

in bio-oil is a product of lignin depolymeriza-

tion and cracking reactions [30]. The amount of 

phenol in pyrolysis products without catalyst 

(39.31%) increased with the addition of non-

activated or activated catalysts (43.81–

47.82%). The increased levels of phenols in bio-

oil were due to the increased amount of lignin 

that was decomposed by the presence of cata-

lysts in pyrolysis. Increased phenol levels in 

bio-oil also occur in the research of Wibowo and 

Lestari [7], where the results of non-catalytic 

bio-oil pyrolysis, with non-activated catalysts, 

as well as with catalysts activated with 0.5, 1, 

1.5 and 2 M H2SO4 solutions, yields improve-

ments of 40.31%, 40.83%, 47.47%, 43.90%, 

45.94%, and 45.57%, respectively.  

 

3.6 Gas Characterization 

The oxygen content in bio-oil lowers the pH, 

making the oil acidic and unfit for use because 

of its corrosive properties. Therefore, the oxy-

genated compounds must be removed. The 

composition of the gas products resulting from 

OPS pyrolysis, as shown in Figure 6, was domi-

nated by CO and CO2, which were 30­–52% 

and 25–64%, respectively. The dominance of 

CO and CO2 in pyrolysis gas products also oc-

curred in the study conducted by Adam et al. 

[32], which pyrolyzed palm oil leaves using a 

variety of catalysts. The CO2 content in gas 

products is produced by several reaction 

routes.  

The removal of oxygen content in carboxylic 

acids in bio-oil to form CO2 is called decarboxy-

lation [29]. Without using a catalyst, the CO2 

content produced was 53%, whereas with the 

use of non-activated catalysts and catalysts ac-

tivated in 1, 3, and 5 hours, the CO2 levels pro-

duced were 51.43%, 64.52%, 51.21%, and 

25.16%, respectively. The decreasing CO2 lev-

els can be explained by the formation of other 

gases, such as CO and H2. The reduction in 

CO2 levels has also been observed by Atnaw et 

Figure 5. Pyrolysis liquid product (bio-oil), 

variation from left to right: without a 

catalyst, BNZ-0, BNZ-1, BNZ-3, BNZ-5. 
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al. [33], who have studied the process of gasifi-

cation of palm oil leaves at varying tempera-

tures. As can be seen from the graph, decreased 

CO2 levels along with increasing levels of CO, 

CO2 and CH4 products are seen, due to the re-

duction of the oxygen content of the bio-oil by 

using a catalyst. Adam et al. [32], who pyro-

lyzed raw pine wood with various catalysts, 

have also observed the same effect. 

In this study, the amount of HHV in each 

sample ranged from 9–18 MJ/Nm3 (Figure 7). 

The highest HHV value was in the gas prod-

ucts of BNZ-5, 18.63 MJ/Nm3, because CO2 gas 

products are formed in line with the increases 

in H2, CO and CH4. The estimated value of 

HHV in pyrolysis gas products ranged between 

11–20 MJ/Nm3 [8]. The HHV value obtained in 

this study is greater than that obtained in the 

research conducted by Kim et al. [22], who con-

ducted research on palm shells using a non-

catalytic pyrolysis method with pyrolysis tem-

peratures below 500 ºC, with resulting average 

HHV values of 4–8 MJ/Nm3. The use of a cata-

lyst and the optimum pyrolysis temperature in-

creased the HHV value of the gas product  

4. Conclusion 

Some conclusions that can be drawn from 

this research are that acid treatment of natu-

ral zeolites will damage the crystal structure of 

the zeolites, and the longer the duration of the 

treatment the less zeolite mass is left in the fi-

nal modification. The use of activated natural 

zeolite catalyst for pyrolysis decreased the oxy-

gen levels of bio-oil due to the thermal decom-

position reactions. In addition, the use of acti-

vated natural zeolite catalysts increases CO, 

CH4, and H2 gas levels with decreasing CO2. 

However, no significant effect of activated nat-

ural zeolite on the solid product was observed. 
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Compound Without Catalyst BNZ- 0 BNZ- 1 BNZ- 3 BNZ- 5 

Acetone (2-Propanon) 1.37 1.22 - 1.19 - 

Acetic Acid 46.06 40.1 45.86 37.2 42.07 

Propanoic Acid 1.32 - - 2.11 - 

2-Furancaboxaldehyde 1.08 0.96 - 0.96 - 

Phenol 39.31 46.89 47.02 43.83 43.81 

Pyridine 1.59 1.51 - 1.56 2.1 

1,2 - Benzenediol 7.24 7.08 7.12 13.14 9.4 

5,4'-Dimethoxy-2-methylbibenzyl - 2.25 - - - 

Table 4.  Liquid product analysis results (bio-oil).  

Figure 6. Composition of pyrolysis gas 

products. 

Figure 7. HHV values of pyrolysis gas 

products  
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