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Abstract 

Mg-Al-layered double hydroxide (LDH) was fabricated using a coprecipitation method at pH 10. Thereafter, Mg-

Al-LDH was impregnated with biochar to manufacture a Mg-Al/Biochar composite. The composite was character-

ized using powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, N2 adsorption—

desorption, thermogravimetry-differential thermal analysis (TG-DTA), and scanning electron microscopy (SEM) 

experiments, and was subsequently used for malachite green (MG) adsorption. MG adsorption experiments were 

performed in a batch system, and the effects of temperature and adsorption kinetic and isotherm parameters on 

the adsorption process were analyzed. The stability of Mg-Al/Biochar was evaluated using regeneration experi-

ments over three cycles. The peaks at 11.47° (003), 22.86° (002), 34.69° (012), and 61.62° (116), in the XRD profile 

of Mg-Al/Biochar suggested that Mg-Al/Biochar was successfully fabricated. The surface area of Mg-Al/Biochar 

was up to five times larger than that of pristine Mg-Al-LDH. The adsorption of MG on Mg-Al/Biochar was domi-

nated by interactions at the surface of the adsorbent and was classified as physical adsorption; moreover the maxi-

mum adsorption capacity of Mg-Al/Biochar was 70.922 mg/g. Furthermore, the MG removal of Mg-Al/Biochar dur-

ing three successive adsorption cycles (i.e. 66.73%, 65.57%, and 65.77% for the first, second, and third adsorption 

cycle) did not change significantly, which indicated the stable structure of the adsorbent. 
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1. Introduction 

The use of synthetic dyes in industries, such 

as: the textile, paint, leather, photography pa-
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per, cosmetic, and rubber industries, has in-

creased significantly in the past decade owing to 

the use of bright and appealing materials [1–3]. 

However, such industries generate wastes that 

pollute the aquatic environments they are re-

leased into [4]. Because pollutant dyes affect hu-
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man health and the flora and fauna of ecosys-

tems [5], such dyes should be removed before 

releasing industrial waste in aquatic systems. 

Researchers have explored several methods for 

dye removal from aqueous solutions, including 

oxidation, photodegradation, membrane sepa-

ration, biological processes, and adsorption [6–

9]. Among all methods, adsorption is the most 

suitable owing to its high speed, high efficiency, 

ease of use, and low cost [3]. However, adsorp-

tion efficiency depends on the properties and 

quality of the adsorbents used for dye removal 

from aqueous solutions. Adsorbents are typical-

ly classified into organic and inorganic. Organic 

adsorbents, such as agricultural biomass, al-

gae, chitin, chitosan, and cellulose, are com-

monly found in the environment [10–13]. Ad-

sorption using organic adsorbents primarily de-

pends on the functional groups that act as ac-

tive sites. Inorganic adsorbents are also com-

monly found in the environment or can be syn-

thesised, and the most frequently used inorgan-

ic adsorbents include bentonite, zeolite, kaolin-

ite, montmorillonite, and layered double hy-

droxides (LDHs) [14–16].  

LDHs are typical composites featuring posi-

tively charged brucite-like layers and two-

dimensional nanostructures [17–18]. Moreover, 

LDHs can be modified to customize and improve 

their properties for specific applications. LDHs 

have been used as efficient adsorbents for dye 

removal from aqueous solutions. Ouassif et al. 

[19] used ZnAl LDH for tartrazine dye removal 

and achieved an adsorption capacity of 99.5 

mg/g after 60 min at pH 5.8. Sa et al. [20] used 

CaAl-LDH-NO3 to adsorb Sunset Yellow FCF at a 

pH of 4 and reported a maximum adsorption ca-

pacity (qmax) of 398.41 mg/g. Lesbani et al. [21] 

used CaAl LDH to adsorb methylene blue and 

achieved a qmax value of 8.27 mg/g. Calcined 

MgAl-CO3 LDH was used to remove indigo car-

mine dye from aqueous solutions by adjusting 

the pH, temperature, and contact time. The ad-

sorption capacity of calcined MgAl-CO3 LDH 

was 87.92 mg/g at pH 8.8 after 40 min [22]. 

Lafi et al. [23] fabricated Mg-Al LDH and used 

it as adsorbent for Congo red. The adsorption 

data fit the Langmuir adsorption isotherm 

model, and the reported qmax value was 111.11 
mg/g at pH 7.7.  

Previous studies have indicated that the ad-

sorption capacity of LDHs for dyes was limited. 

Furthermore, LDH modification was required 

to increase the adsorption capacity of LDHs for 

dyes. The modification of LDH and carbon-

based materials has been increasingly studied, 

and many researchers have used modified 

LDHs to remove organic pollutants from 

wastewater. Hu et al. [24] reported that a 

NiFe-LDH nanosheet/carbon fibre nanocompo-

site was effective for removing Congo red and 

methyl orange from aqueous solutions. Their 

results demonstrated that modification in-

creased the adsorption capacity of NiFe-LDH 

for methyl orange and Congo red from 22.2 to 

232.6 mg/g and from 103.7 to 448.4 mg/g, re-

spectively. Meili et al. [25] fabricated MgAl-

LDH/Biochar composites using pure bovine 

bone biochar and used them for methylene blue 

adsorption. The adsorption data fit the Langmuir 

isotherm and pseudo-second-order (PSO) kinet-

ic models, and the qmax value of the composites 

at 40 °C ranged between 46.3 and 406.47 mg/g. 

Zubair et al. [26] reported that the adsorption 

capacity of MgAl-LDH/Biochar composites for 

methylene blue (302.75 mg/g after 180 min) 

was higher than those of pristine biochar 

(206.61 mg/g after 480 min) and pristine MgAl-

LDH (244.47 mg/g after 480 min). Amin et al. 

[27] reported that the Freundlich qmax value of 

NiZnFe-LDH composites with date palm bio-

char and carbon nanotubes for RB5 dye (121 

mg/g) was higher than that of pristine NiZnFe-

LDH (63.22 mg/g). Palapa et al. [28] fabricated 

a CuAl-LDH/Biochar composite using rice husk 

biochar and achieved a qmax of 470.96 mg/g, 

which was higher than that of pristine CuAl-

LDH (59.523 mg/g). 

The aforementioned studies indicated that 

LDH modification can be used to increase the 

adsorption capacity of LDHs for dyes. Because 

malachite green (MG), which is a synthetic cat-

ionic dye (Figure 1), cannot be degraded by mi-

crobes in aquatic systems, its removal using 

other methods is critical. In this study, Mg-Al-

LDH was impregnated with biochar to fabri-

cate a Mg-Al/Biochar composite with high ad-

sorption capacity. Moreover, biochar impregna-

tion increased LDH stability and improved ad-

sorbent reusability. MG adsorption was per-

formed in a batch system, and the effects of 

 
N N

Cl

Figure 1. Chemical structure of malachite 

green. 
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contact time and isotherm, desorption, and re-

generation parameters on the adsorption pro-

cess were investigated. 

 

2. Materials and Methods 

2.1 Chemical and Instrumentations 

Chemicals were obtained from magnesium 

nitrate, aluminum nitrate, sodium hydroxide, 

acetone, and hydrochloric acid which purchased 

from Merck and Sigma-Aldrich and the rice 

husk Biochar was acquired by Bukata Organic 

Indonesia. Material was characterized using X-

Ray powder Rigaku Miniflex-6000. IR spectrum 

was recorded by using FTIR Shimadzu Pestige-

21  at wavenumber 400–4000 cm−1.  Surface  

area, pore diameter, and pore size were meas-

ured by BET method by Micromeritic ASAP 

and sample was degassed using liquid nitrogen 

and material thermal analysis was studied by 

TG-DTA Shimadzu was used to study. The 

morphology of the materials were tested by 

SEM Quanta-650 OXFORD Instrument. Con-

centration of MG was analyzed using Biobase 

BK-UV 1800 PC spectrophotometer at 617 nm. 

 

2.2 Preparation of  Mg-Al-LDH and Composite 

Mg-Al/Biochar 

Mg-Al-LDH was prepared  by dropping a so-

lution 0.75 MMg(NO3)2.6H2O (100 mL) to 0.25 

MAl(NO3)3.9H2O (100 mL). To achieve pH 10, 

NaOH was added in to the mixture and stirred 

for 30 min. The mixture was heated at 80 ℃ 

overnight. The obtained precipitate was dried in 

oven at 100 ºC for 24 hours. The Mg-Al/Biochar 

was produced by mixing magnesium nitrate 

and aluminum nitrate (3:1). The mixture was 

gently stirred for 1 hour. The reaction mixture 

was poured with 1 g of biochar and reaction 

was mixed by constant stirring under pH 10. 

The mixture was heat at 90 °C for 3 days and 

dried at 110 °C for 5-6 days prior characteriza-

tion. 

 

2.3 Adsorption Process 

MG adsorption experiments were performed 

at adsorption times in the range of 10–200 min, 

MG concentrations in the range of 10–200 min, 

and temperatures in the range of 30–60 °C. The 

concentration of MG in the filtrate after ad-

sorption was analyzed using the aforemen-

tioned UV–Vis spectrophotometer. 

 

2.4 Desorption and Regeneration Experiments 

MG desorption from the Mg-Al/Biochar com-

posite was evaluated using several reagents, 

namely water, acetone, HCl, and NaOH, and 

the optimal desorption reagents were subse-

quently used to regenerate the adsorbent. After 

desorption, the adsorbent was collected and 

dried at 100 °C. Thereafter, the regenerated 

adsorbent was reused for three adsorption cy-

cles. MG dye removal experiments were per-

formed using previously reported optimal time 

and temperature values. 

 

3. Results and Discussion 

The XRD profiles of Mg-Al-LDH, biochar, 

and Mg-Al/Biochar are presented in Figure 2. 

The formation of Mg-Al-LDH was confirmed by 

the presence of the diffraction peaks at 11.47°, 

22.86°, 34.69°, 60.33°, and 61.62°, which corre-

sponded to the (003), (002), (012), (110), and 

(116) planes of LDHs comprising divalent and 

trivalent ions (JCPDS no. 70-215) [29–30]. The 

presence of a metal oxide peak at 29.49° in the 

XRD pattern of Mg-Al-LDH (Figure 2a) was as-

cribed to the synthesis conditions [31]. The 

wide peak in the XRD pattern of rice husk bio-

char (Figure 2b) was attributed to biochar be-

ing an organic material consisting mainly of 

carbon. Moreover, the peaks at approximately 

21–26° in the XRD pattern of biochar were at-

tributed the (002) plane of carbon [32]. The 

XRD pattern of Mg-Al/Biochar is illustrated in 

Figure 2c. The peaks at 11.47° (003), 22.86° 

(002), 34.69° (012), and 61.62° (116) confirmed 

that Mg-Al/Biochar was successfully synthe-

sized.  

The N2 adsorption–desorption isotherms of 

Mg-Al-LDH, biochar, and Mg-Al/Biochar are 

presented in Figure 3. The adsorption patterns 

Figure 2. X-ray diffraction patterns of (a) Mg-

Al-layered double hydroxide, (b) biochar, and 

(c) Mg-Al/Biochar. 
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of all samples were different from their desorp-

tion patterns. All materials presented H2 type 

hysteresis loops and, therefore, were classified 

as mesoporous [33]. The BET surface areas of 

the adsorbents were calculated using the N2 

adsorption–desorption isotherms and the data 

are summarized in Table 1. 

The surface area of Mg-Al/Biochar compo-

site (111.404 m2/g) was significantly higher 

than those of Mg-Al-LDH (23.150 m2/g) and bi-

ochar (50.936 m2/g). Moreover, the pore size 

and pore volume of the composite were smaller 

than those of Mg-Al-LDH and biochar because 

biochar covered the surface of Mg-Al-LDH. 

These results were consistent with the predic-

tion that when the surface of Mg-Al-LDH was 

covered by biochar which consists of carbon, ad-

sorption was dominated by physical interac-

tions [34]. 

The FTIR spectra of the adsorbents are pre-

sented in Figure 4. The main vibration at 1381 

cm-1 in the FTIR spectrum of Mg-Al-LDH was 

ascribed to the nitrate ions in the materials 

used to synthesize Mg-Al-LDH. The stretching 

vibration at 1635 cm−1 was attributed to the vi-

bration of the OH group of water. The vibration 

at 2376 cm−1 was ascribed to the C−H bonds of 

biochar [35]. The vibrations at 3448 and 1635 

cm−1 were assigned to the stretching and bend-

ing of the O−H bonds of water [28]. Conversely, 

the vibrations at 1381 cm−1 (stretching of N−O 

bonds of nitrate anions), 3447 cm−1 (stretching 

of O−H bonds of physisorbed water), 1010 cm−1 

(stretching of C−O bonds of biochar), and 1635 

cm−1 (stretching of O−H bonds of water) in the 

FTIR spectrum of the Mg-Al/Biochar composite 

(Figure 4c) indicated that Mg-Al-LDH and bio-

char formed a composite. 

The TG-DTA profiles of Mg-Al-LDH and 

Mg-Al/Biochar are illustrated in Figure 5. The 

profile of Mg-Al-LDH consisted of three endo-

thermic peaks at 105, 330, and 720 °C, which 

were assigned to the loss of lattice water, de-

composition of nitrates in the interlayer, and 

destruction of the layered structure, respective-

ly. Conversely, the TG-DTA profile of biochar 

consisted of two peaks at 110 and 490 °C. The 

endothermic peak at 110 °C was attributed to 

the loss of water in the lattice structure, 

whereas the exothermic peak at 490 °C was at-

tributed to the oxidation of organic compounds 

in biochar [36]. The TG-DTA profile of Mg-

Al/Biochar (Figure 5c) consisted of two endo-

thermic peaks at 110 and 305 °C and one exo-

thermic peak at 490 °C. These data revealed 

that the composite consisted of Mg-Al-LDH and 

Figure 3. N2 adsorption–desorption isotherms 

of (a) Mg-Al- layered double hydroxide, (b) bio-

char, and (c) Mg-Al/Biochar. 

Adsorbents Surface Area (BET) (m2/g) Pore Volume (BJH) (cm3/mg) Pore Diameter (BJH) (nm) 

Mg-Al-LDH 23.150 0.092 36.000 

Biochar 50.936 0.025 12.087 

Mg-Al/Biochar 111.404 0.062 10.918 

Table 1. Morphology analysis of Mg-Al-LDH, Biochar and Mg-Al/Biochar. 

Figure 4. Fourier-transform infrared spectra 

of (a) Mg-Al- layered double hydroxide, (b) bio-

char, and (c) Mg-Al/Biochar. 
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biochar. The exothermic peak was predominant 

in the TG-DTA profile of the Mg-Al/Biochar 

composite, probably because the biochar con-

tent of the composite was slightly higher than 

the Mg-Al-LDH content.  

The morphologies of the Mg-Al-LDH, bio-

char, and Mg-Al/biochar are presented in Fig-

ure 6. Mg-Al-LDH presented a cubic morpholo-

gy with agglomerated particles scattered on 

the surface, which was in agreement with the 

findings of Palapa et al. [37]. Conversely, bio-

char consisted of sharp and large particles with 

an irregular porous structure. The morphology 

of Mg-Al/Biochar was a hybrid of the morpholo-

gies of Mg-Al-LDH and biochar; Mg-Al/Biochar 

presented a heterogeneous morphology and the 

Figure 5. Thermogravimetric analysis (TGA) 

and differential thermal analysis (DTA) pat-

terns of (a) Mg-Al-layered double hydroxide, (b) 

biochar, and (c) Mg-Al/Biochar. 

Figure 6. Scanning electron microscopy imag-

es of (a) Mg-Al- layered double hydroxide, (b) 

biochar, and (c) Mg-Al/Biochar. 

(a) 

(b) 

(c) 
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particles on its surface were large (Figure 7). 

Mg-Al/Biochar particle size ranged between 

0.139-0.341 µm; moreover, its particle size dis-

tribution was wider than that of pristine Mg-

Al-LDH and, therefore, the surface area of Mg-

Al/Biochar composite was higher than that of 

Mg-Al-LDH. Ahmed et al. [38] suggested that 

the increase in particle size of Mg-Al/Biochar 

was caused by the pores of biochar particles be-

ing well dispersed on the LDH surface, there-

fore demonstrating that biochar modification 

was successful. 

MG adsorption on Mg-Al-LDH, biochar, and 

Mg-Al/Biochar was analysed using kinetic and 

isotherm adsorption experiments. The adsorp-

tion time ranged between 10–210 min and the 

kinetic parameters were fitted using pseudo-

first-order (PFO) and pseudo-second-order PSO 

kinetic models [24–39]. The experimental data 

are presented in Figure 8, and the kinetic pa-

rameters are summarized in Table 2. The data 

in Table 2 indicated that MG adsorption on 

Mg-Al-LDH, biochar, and Mg-Al/Biochar fol-

lowed the PSO rather than the PFO kinetic 

model, and the correlation coefficient (R2) for 

the PSO kinetic model was approximately 1. 

The PSO reaction constant values suggested 

that MG adsorption on Mg-Al/Biochar was 

slower than that on pristine Mg-Al-LDH, prob-

ably owing to biochar loading on Mg-Al-LDH. 

The equilibrium absorption capacity of Mg-

Figure 7. Particle size distribution of (a) Mg-

Al- layered double hydroxide, (b) biochar, and 

(c) Mg-Al/Biochar. 

Figure 8. Kinetics of malachite green adsorp-

tion on Mg-Al-layered double hydroxide, bio-

char, and Mg-Al/Biochar; here, PFO and PSO 

denote pseudo-first- and pseudo-second-order 

kinetic models, respectively. 

LDH 
  qe 

(mg/L) 

Co 

(mg/L) 

PFO   PSO  

qe 

(mg/g) 

k1 

(min−1) 
R2  

qe 

(mg/L) 

k2 

(min−1) 
R2 

Mg-Al 80.276 200 52.674 0.003 0.9612  85.470 0.001 0.999 

Biochar 93.448 200 77.553 0.030 0.9763  100.000 0.001 0.995 

Mg-Al/Biochar 122.379 200 125.545 0.029 0.9278  133.333 0.0004 0.983 

Table 2. Adsorption Kinetic of Mg-Al-LDH and Mg-Al/Biochar. 
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Al/Biochar was higher than those of Mg-Al-

LDH or biochar because adsorption occurred at 

the surface sites. 

The isotherm fit parameters for the MG ad-

sorption on Mg-Al-LDH, biochar, and Mg-

Al/Biochar are illustrated in Figure 9. The ad-

sorption temperature ranged between 30–60 °C 

and the initial MG concentration ranged be-

tween 50–250 mg/L. MG adsorption increased 

significantly as MG concentration was in-

creased from 50 to 150 mg/L at all tempera-

tures and remained constant after 150 min of 

adsorption. MG adsorption at high tempera-

tures was higher than at low temperatures for 

all adsorbents. The data in Figure 9 were used 

to calculate the isotherm and thermodynamic 

adsorption parameters, and the results are 

summarized in Tables 3 and 4, respectively.  

MG adsorption fit the Freundlich isotherm 

model better than the Langmuir model. The R2 

values of all adsorbents for the Freundlich 

model were higher than those for the Lang-

muir model. These results indicated that MG 

adsorption on Mg-Al-LDH, biochar, and Mg-

Al/Biochar was dominated by physical adsorp-

tion and depended on the surface area of the 

Figure 9. Isotherm parameters for malachite green adsorption on (a) Mg-Al-layered double hydroxide, 

(b) biochar, and (c) Mg-Al/Biochar. 

Langmuir Constants   Freundlich Constants 
LDH 

qmax KL R2  n KF R2 

Mg-Al 44.444 0.180 0.715  1.194 9.456 0.996 

Biochar 56.818 0.013 0.732  0.462 18.767 0.958 

Mg-Al/Biochar 70.922 0.084 0.953  4.897 25.119 0.999 

Table 3. Adsorption malachite green isotherms of Mg-Al-LDH, Biochar and Mg-Al/Biochar. 

T 

(K) 

Mg-Al-LDH   Biochar    Mg-Al/Biochar  

△H 

(kJ/mol) 

△S 

(kJ/K/mol) 

△G 

(kJ/mol) 
 

△H 

(kJ/mol) 

△S 

(kJ/K/mol) 

△G 

(kJ/mol) 
 

△H 

(kJ/mol) 

△S 

(kJ/K/mol) 

△G 

(kJ/mol) 

303 

38.204 0.139 

−3.905 

  5.531 0.019 

−0.184   

7.203 0.024 

−0.189 

313 −5.295 −0.372   −0.433 

323 −6.685 −0.561   −0.677 

333 −8.075 −0.749   −0.921 

Table 4. The parameters thermodinamic of Adsorption Malachite Green of Mg/Al, Biochar, and Mg-

Al/Biochar. 
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adsorbent [40–42]. Although chemical interac-

tions probably occurred during MG adsorption, 

the contribution of chemical adsorption was 

negligible. The adsorption energies of Mg-Al-

LDH, biochar, and Mg-Al/Biochar (Table 3) fur-

ther confirmed the predominance of physical 

adsorption in this study [39]. The MG adsorp-

tion capacities of several adsorbents reported in 

the literature and Mg-Al-LDH and Mg-

Al/Biochar used in this study are summarized 

in Table 5. The adsorption capacity of Mg-Al-

LDH for MG was similar to that of other LDHs 

but was slightly lower than those of biomass-

based adsorbents. Conversely, the adsorption 

capacity of Mg-Al/Biochar was higher than 

those of unmodified LDHs. These results were 

attributed to the increase in surface area 

caused by biochar modification and involve-

ment of the active sites of biochar in adsorp-

tion. 

The UV–Vis spectrum for MG removal us-

ing Mg-Al/Biochar is presented in Figure 10. 

The adsorption peak was observed at a wave-

length of 617 nm. Moreover, the UV–Vis data 

revealed that adsorption occurred rapidly when 

the contact time ranged between 0–60 min and 

reached an equilibrium when the contact time 

was extended to 90–120 min; MG concentra-

tion decreased from 19.905 to 6.168 mg/L. The 

mechanism of MG adsorption on Mg-Al/Biochar 

is presented in Figure 11. Mg-Al/Biochar suc-

cessfully removed MG, probably via electrostat-

ic attractions and hydrogen bonding, because 

electrostatic attraction occurred between the 

active sites of biochar and MG. 

MG desorption from Mg-Al-LDH, biochar, 

and Mg-Al/Biochar was performed to deter-

mine the predominant type of adsorbent–

adsorbate interaction. Desorption was per-

formed using water, hot water, acetone, HCl, 

and NaOH as desorption reagents. The experi-

Adsorbent Adsorption Capacity (mg/g) Reference 

Sugarcane bagasse biochar 10 [43] 

MWCNT-COOH 11.73 [44] 

C-Zn-Al 126.58 [45] 

Zn-NR-AC 59.17 [46] 

ZnO-NR-AC 20 [46] 

Luffa aegayptica peel 70.21 [47] 

Peltophorumpterocarpumfruit shells 62.50  [48] 

Ni/Fe LDH 6.93 [49] 

Co/Fe LDH 44.73 [50] 

Cu/Cr LDH 55.86 [51] 

Mg-Al LDH 44.444 This Study 

Mg-Al/Biochar 70.922 This Study 

Table 5. Comparison of several adsorbents to remove MG from aqueous solution. 

Figure 10. Ultraviolet–visible absorption spec-

trum for malachite green (MG) adsorption on 

Mg-Al/Biochar (m = 200 mg, V = 19.905 mL, Co 

= 25 mg/L). 

Figure 11. Mechanism of malachite green ad-

sorption on Mg-Al/Biochar; here, LDH denotes 

layered double hydroxide. 
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mental data (Figure 12) revealed that HCl was 

a suitable reagent for MG desorption from Mg-

Al-LDH and Mg-Al/Biochar. However, the best 

reagent for MG desorption from biochar was ac-

etone [52]. The optimal desorption using HCl 

indicated that a small degree of ionic interac-

tion was present between MG and Mg-Al-LDH 

and Mg-Al/Biochar. Although physical interac-

tions were predominant in this study, the elec-

trostatic interactions between the positive 

charges of MG and the negative charges of Mg-

Al-LDH and Mg-Al/Biochar was still observed 

to a small degree. 

Mg-Al-LDH, biochar, and Mg-Al/Biochar re-

generation was performed using HCl, acetone, 

and HCl, respectively. The adsorbents were 

used for three adsorption cycles as presented in 

Figure 9. Mg-Al-LDH and biochar were unsta-

ble; however, Mg-Al/Biochar was stable for 

three adsorption cycles without a significant 

decrease in adsorption capacity (Figure 13). 

Mg-Al-LDH was exfoliated by HCl and biochar 

was destroyed by acetone. Conversely, Mg-

Al/Biochar was stable in HCl and organic sol-

vents; therefore, the structure of Mg-Al/Biochar 

was stable and its adsorption capacity did not 

change significantly over three adsorption cy-

cles. 

 

4. Conclusions 

Mg-Al/Biochar composite was successfully 

synthesised using Mg-Al-LDH and biochar. The 

layered structure of Mg-Al/Biochar was con-

firmed by the peaks at 11.47° (003), 22.86° 

(002), 34.69° (012), and 61.62° (116) in the XRD 

profile of Mg-Al/Biochar. The surface area of 

Mg-Al/Biochar was higher than that of pristine 

Mg-Al-LDH. Moreover, the adsorption of MG 

on Mg-Al/Biochar, which was dominated by 

physical adsorption, followed the PSO kinetic 

and Freundlich isotherm models. The adsorp-

tion energy of Mg-Al/Biochar ranged between 

5.531–38.024 kJ/mol, which further confirmed 

the predominant physical nature of the adsorp-

tion process. Furthermore, Mg-Al/Biochar pre-

sented a highly stable structure and was re-

used for three adsorption cycles with negligible 

changes in adsorption capacity. 
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